--- license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_large results: [] --- # bert_large This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2030 - Accuracy: 0.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2284 | 1.0 | 1250 | 0.1660 | 0.9418 | | 0.1115 | 2.0 | 2500 | 0.2030 | 0.9472 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2