Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -23,17 +23,17 @@ This model is part of the [StepLaw-N_59M-D_7.0B](https://huggingface.co/collecti
|
|
23 |
- **Feed-forward network size (FFN)**: 5016
|
24 |
- **Attention heads**: 9
|
25 |
- **Layers**: 6
|
26 |
-
- **Parameter count**:
|
27 |
|
28 |
### Training Parameters
|
29 |
- **Learning rate (lr)**: 3.906e-03
|
30 |
-
- **Batch size (bs)**:
|
31 |
- **Training iterations**: 15258
|
32 |
- **Training tokens (D)**: 8.0B
|
33 |
|
34 |
## Model Description
|
35 |
|
36 |
-
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.906e-03 and batch size
|
37 |
|
38 |
## Usage Example
|
39 |
|
@@ -48,7 +48,4 @@ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
|
48 |
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
|
49 |
outputs = model.generate(**inputs, max_length=100)
|
50 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
51 |
-
|
52 |
-
|
53 |
-
StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
|
54 |
-
Visit [StepLaw Project](https://step-law.github.io/) for more information.
|
|
|
23 |
- **Feed-forward network size (FFN)**: 5016
|
24 |
- **Attention heads**: 9
|
25 |
- **Layers**: 6
|
26 |
+
- **Parameter count**: 59M
|
27 |
|
28 |
### Training Parameters
|
29 |
- **Learning rate (lr)**: 3.906e-03
|
30 |
+
- **Batch size (bs)**: 524288
|
31 |
- **Training iterations**: 15258
|
32 |
- **Training tokens (D)**: 8.0B
|
33 |
|
34 |
## Model Description
|
35 |
|
36 |
+
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.906e-03 and batch size 524288 for 15258 iterations, using a total of 8.0B training tokens.
|
37 |
|
38 |
## Usage Example
|
39 |
|
|
|
48 |
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
|
49 |
outputs = model.generate(**inputs, max_length=100)
|
50 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
51 |
+
```
|
|
|
|
|
|