Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- StepLaw
|
5 |
+
- causal-lm
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
model-index:
|
11 |
+
- name: step2v2_0618_h1280_ffnh9048_numh10_numl13_lr1.38E-03_bs512_ti47683_mlr1.00E-05
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
# Wandb Model Name: step2v2_0618_h1280_ffnh9048_numh10_numl13_lr1.38E-03_bs512_ti47683_mlr1.00E-05
|
16 |
+
|
17 |
+
This model is part of the [StepLaw-N_536M-D_49.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_536M-D_49.0B) collection.
|
18 |
+
|
19 |
+
## Model Specifications
|
20 |
+
|
21 |
+
### Architecture
|
22 |
+
- **Hidden size (H)**: 1280
|
23 |
+
- **Feed-forward network size (FFN)**: 9048
|
24 |
+
- **Attention heads**: 10
|
25 |
+
- **Layers**: 13
|
26 |
+
- **Parameter count**: 536MM
|
27 |
+
|
28 |
+
### Training Parameters
|
29 |
+
- **Learning rate (lr)**: 1.38E-03
|
30 |
+
- **Batch size (bs)**: 512
|
31 |
+
- **Training iterations**: 47683
|
32 |
+
- **Training tokens (D)**: 50.0B
|
33 |
+
|
34 |
+
## Model Description
|
35 |
+
|
36 |
+
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.38E-03 and batch size 512 for 47683 iterations, using a total of 50.0B training tokens.
|
37 |
+
|
38 |
+
## Usage Example
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
42 |
+
|
43 |
+
model_name = "StepLaw/StepLaw-N_536M-D_49.0B-LR1.38E-03-BS1048576"
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
46 |
+
|
47 |
+
# Generate text
|
48 |
+
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
|
49 |
+
outputs = model.generate(**inputs, max_length=100)
|
50 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
51 |
+
```## Part of StepLaw Project
|
52 |
+
|
53 |
+
StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
|
54 |
+
Visit [StepLaw Project](https://step-law.github.io/) for more information.
|