--- license: apache-2.0 tags: - StepLaw - causal-lm language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: step2v2_0618_h1024_ffnh9552_numh16_numl8_lr6.905e-04_bs2048_ti19073_mlr1.00e-05 results: [] --- # Wandb Model Name: step2v2_0618_h1024_ffnh9552_numh16_numl8_lr6.905e-04_bs2048_ti19073_mlr1.00e-05 This model is part of the [StepLaw-N_268M-D_79.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_268M-D_79.0B) collection. ## Model Specifications ### Architecture - **Hidden size (H)**: 1024 - **Feed-forward network size (FFN)**: 9552 - **Attention heads**: 16 - **Layers**: 8 - **Parameter count**: 268M ### Training Parameters - **Learning rate (lr)**: 6.905e-04 - **Batch size (bs)**: 4194304 - **Training iterations**: 19073 - **Training tokens (D)**: 80.0B ## Model Description StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 6.905e-04 and batch size 4194304 for 19073 iterations, using a total of 80.0B training tokens. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "StepLaw/StepLaw-N_268M-D_79.0B-LR6.905e-04-BS4194304" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Generate text inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```