brain-zhang commited on
Commit
f330355
·
verified ·
1 Parent(s): d612efd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +4 -7
README.md CHANGED
@@ -23,17 +23,17 @@ This model is part of the [StepLaw-N_268M-D_79.0B](https://huggingface.co/collec
23
  - **Feed-forward network size (FFN)**: 9552
24
  - **Attention heads**: 16
25
  - **Layers**: 8
26
- - **Parameter count**: 268MM
27
 
28
  ### Training Parameters
29
  - **Learning rate (lr)**: 4.883e-04
30
- - **Batch size (bs)**: 352
31
  - **Training iterations**: 110973
32
  - **Training tokens (D)**: 80.0B
33
 
34
  ## Model Description
35
 
36
- StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 4.883e-04 and batch size 352 for 110973 iterations, using a total of 80.0B training tokens.
37
 
38
  ## Usage Example
39
 
@@ -48,7 +48,4 @@ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
48
  inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
49
  outputs = model.generate(**inputs, max_length=100)
50
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
51
- ```## Part of StepLaw Project
52
-
53
- StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
54
- Visit [StepLaw Project](https://step-law.github.io/) for more information.
 
23
  - **Feed-forward network size (FFN)**: 9552
24
  - **Attention heads**: 16
25
  - **Layers**: 8
26
+ - **Parameter count**: 268M
27
 
28
  ### Training Parameters
29
  - **Learning rate (lr)**: 4.883e-04
30
+ - **Batch size (bs)**: 720896
31
  - **Training iterations**: 110973
32
  - **Training tokens (D)**: 80.0B
33
 
34
  ## Model Description
35
 
36
+ StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 4.883e-04 and batch size 720896 for 110973 iterations, using a total of 80.0B training tokens.
37
 
38
  ## Usage Example
39
 
 
48
  inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
49
  outputs = model.generate(**inputs, max_length=100)
50
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
51
+ ```