Upload 2 files
Browse files- finetune.py +233 -0
- pretrain.py +214 -0
finetune.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
4 |
+
LoggerHook, ParamSchedulerHook)
|
5 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
6 |
+
from peft import LoraConfig
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
BitsAndBytesConfig, SiglipImageProcessor,
|
10 |
+
SiglipVisionModel)
|
11 |
+
|
12 |
+
from xtuner.dataset import LLaVADataset
|
13 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
14 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
15 |
+
from xtuner.dataset.samplers import LengthGroupedSampler
|
16 |
+
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
|
17 |
+
from xtuner.engine.runner import TrainLoop
|
18 |
+
from xtuner.model import LLaVAModel
|
19 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
20 |
+
|
21 |
+
#######################################################################
|
22 |
+
# PART 1 Settings #
|
23 |
+
#######################################################################
|
24 |
+
# Model
|
25 |
+
llm_name_or_path = 'internlm/internlm2-chat-1_8b'
|
26 |
+
visual_encoder_name_or_path = 'google/siglip-so400m-patch14-384'
|
27 |
+
# Specify the pretrained pth
|
28 |
+
pretrained_pth = './work_dirs/pretrain/iter_8721.pth'
|
29 |
+
|
30 |
+
# Data
|
31 |
+
data_root = './'
|
32 |
+
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
|
33 |
+
image_folder = data_root + 'llava_images'
|
34 |
+
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
35 |
+
max_length = int(2048 - (336 / 14)**2)
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 4 # per_device
|
39 |
+
accumulative_counts = 8
|
40 |
+
dataloader_num_workers = 4
|
41 |
+
prefetch = 5
|
42 |
+
max_epochs = 1
|
43 |
+
optim_type = AdamW
|
44 |
+
lr = 2e-4
|
45 |
+
betas = (0.9, 0.999)
|
46 |
+
weight_decay = 0
|
47 |
+
max_norm = 1 # grad clip
|
48 |
+
warmup_ratio = 0.03
|
49 |
+
|
50 |
+
# Save
|
51 |
+
save_steps = 500
|
52 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
53 |
+
|
54 |
+
# Evaluate the generation performance during the training
|
55 |
+
evaluation_freq = 500
|
56 |
+
SYSTEM = ''
|
57 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
58 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
59 |
+
|
60 |
+
#######################################################################
|
61 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
62 |
+
#######################################################################
|
63 |
+
tokenizer = dict(
|
64 |
+
type=AutoTokenizer.from_pretrained,
|
65 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
66 |
+
trust_remote_code=True,
|
67 |
+
padding_side='right')
|
68 |
+
|
69 |
+
image_processor = dict(
|
70 |
+
type=SiglipImageProcessor.from_pretrained,
|
71 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
72 |
+
trust_remote_code=True)
|
73 |
+
|
74 |
+
model = dict(
|
75 |
+
type=LLaVAModel,
|
76 |
+
freeze_llm=True,
|
77 |
+
freeze_visual_encoder=True,
|
78 |
+
pretrained_pth=pretrained_pth,
|
79 |
+
llm=dict(
|
80 |
+
type=AutoModelForCausalLM.from_pretrained,
|
81 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
82 |
+
trust_remote_code=True,
|
83 |
+
torch_dtype=torch.float16,
|
84 |
+
quantization_config=dict(
|
85 |
+
type=BitsAndBytesConfig,
|
86 |
+
load_in_4bit=True,
|
87 |
+
load_in_8bit=False,
|
88 |
+
llm_int8_threshold=6.0,
|
89 |
+
llm_int8_has_fp16_weight=False,
|
90 |
+
bnb_4bit_compute_dtype=torch.float16,
|
91 |
+
bnb_4bit_use_double_quant=True,
|
92 |
+
bnb_4bit_quant_type='nf4')),
|
93 |
+
llm_lora=dict(
|
94 |
+
type=LoraConfig,
|
95 |
+
r=512,
|
96 |
+
lora_alpha=256,
|
97 |
+
lora_dropout=0.05,
|
98 |
+
bias='none',
|
99 |
+
task_type='CAUSAL_LM'),
|
100 |
+
visual_encoder=dict(
|
101 |
+
type=SiglipVisionModel.from_pretrained,
|
102 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path),
|
103 |
+
visual_encoder_lora=dict(
|
104 |
+
type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05, bias='none'),
|
105 |
+
)
|
106 |
+
|
107 |
+
#######################################################################
|
108 |
+
# PART 3 Dataset & Dataloader #
|
109 |
+
#######################################################################
|
110 |
+
llava_dataset = dict(
|
111 |
+
type=LLaVADataset,
|
112 |
+
data_path=data_path,
|
113 |
+
image_folder=image_folder,
|
114 |
+
tokenizer=tokenizer,
|
115 |
+
image_processor=image_processor,
|
116 |
+
dataset_map_fn=llava_map_fn,
|
117 |
+
template_map_fn=dict(
|
118 |
+
type=template_map_fn_factory, template=prompt_template),
|
119 |
+
max_length=max_length,
|
120 |
+
pad_image_to_square=True)
|
121 |
+
|
122 |
+
train_dataloader = dict(
|
123 |
+
batch_size=batch_size,
|
124 |
+
num_workers=dataloader_num_workers,
|
125 |
+
prefetch_factor=prefetch,
|
126 |
+
dataset=llava_dataset,
|
127 |
+
sampler=dict(
|
128 |
+
type=LengthGroupedSampler,
|
129 |
+
length_property='modality_length',
|
130 |
+
per_device_batch_size=batch_size * accumulative_counts),
|
131 |
+
collate_fn=dict(type=default_collate_fn))
|
132 |
+
|
133 |
+
#######################################################################
|
134 |
+
# PART 4 Scheduler & Optimizer #
|
135 |
+
#######################################################################
|
136 |
+
# optimizer
|
137 |
+
optim_wrapper = dict(
|
138 |
+
type=AmpOptimWrapper,
|
139 |
+
optimizer=dict(
|
140 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
141 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
142 |
+
accumulative_counts=accumulative_counts,
|
143 |
+
loss_scale='dynamic',
|
144 |
+
dtype='float16')
|
145 |
+
|
146 |
+
# learning policy
|
147 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
148 |
+
param_scheduler = [
|
149 |
+
dict(
|
150 |
+
type=LinearLR,
|
151 |
+
start_factor=1e-5,
|
152 |
+
by_epoch=True,
|
153 |
+
begin=0,
|
154 |
+
end=warmup_ratio * max_epochs,
|
155 |
+
convert_to_iter_based=True),
|
156 |
+
dict(
|
157 |
+
type=CosineAnnealingLR,
|
158 |
+
eta_min=0.0,
|
159 |
+
by_epoch=True,
|
160 |
+
begin=warmup_ratio * max_epochs,
|
161 |
+
end=max_epochs,
|
162 |
+
convert_to_iter_based=True)
|
163 |
+
]
|
164 |
+
|
165 |
+
# train, val, test setting
|
166 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
167 |
+
|
168 |
+
#######################################################################
|
169 |
+
# PART 5 Runtime #
|
170 |
+
#######################################################################
|
171 |
+
# Log the dialogue periodically during the training process, optional
|
172 |
+
custom_hooks = [
|
173 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
174 |
+
dict(
|
175 |
+
type=EvaluateChatHook,
|
176 |
+
tokenizer=tokenizer,
|
177 |
+
image_processor=image_processor,
|
178 |
+
every_n_iters=evaluation_freq,
|
179 |
+
evaluation_inputs=evaluation_inputs,
|
180 |
+
evaluation_images=evaluation_images,
|
181 |
+
system=SYSTEM,
|
182 |
+
prompt_template=prompt_template)
|
183 |
+
]
|
184 |
+
|
185 |
+
# configure default hooks
|
186 |
+
default_hooks = dict(
|
187 |
+
# record the time of every iteration.
|
188 |
+
timer=dict(type=IterTimerHook),
|
189 |
+
# print log every 10 iterations.
|
190 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
191 |
+
# enable the parameter scheduler.
|
192 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
193 |
+
# save checkpoint per `save_steps`.
|
194 |
+
checkpoint=dict(
|
195 |
+
type=CheckpointHook,
|
196 |
+
by_epoch=False,
|
197 |
+
interval=save_steps,
|
198 |
+
max_keep_ckpts=save_total_limit),
|
199 |
+
# set sampler seed in distributed evrionment.
|
200 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
201 |
+
)
|
202 |
+
|
203 |
+
# configure environment
|
204 |
+
env_cfg = dict(
|
205 |
+
# whether to enable cudnn benchmark
|
206 |
+
cudnn_benchmark=False,
|
207 |
+
# set multi process parameters
|
208 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
209 |
+
# set distributed parameters
|
210 |
+
dist_cfg=dict(backend='nccl'),
|
211 |
+
)
|
212 |
+
|
213 |
+
# set visualizer
|
214 |
+
from mmengine.visualization import Visualizer, TensorboardVisBackend
|
215 |
+
visualizer = dict(
|
216 |
+
type=Visualizer,
|
217 |
+
vis_backends=[dict(type=TensorboardVisBackend)]
|
218 |
+
)
|
219 |
+
|
220 |
+
# set log level
|
221 |
+
log_level = 'INFO'
|
222 |
+
|
223 |
+
# load from which checkpoint
|
224 |
+
load_from = None
|
225 |
+
|
226 |
+
# whether to resume training from the loaded checkpoint
|
227 |
+
resume = False
|
228 |
+
|
229 |
+
# Defaults to use random seed and disable `deterministic`
|
230 |
+
randomness = dict(seed=None, deterministic=False)
|
231 |
+
|
232 |
+
# set log processor
|
233 |
+
log_processor = dict(by_epoch=False)
|
pretrain.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from mmengine.dataset import DefaultSampler
|
4 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
5 |
+
LoggerHook, ParamSchedulerHook)
|
6 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
BitsAndBytesConfig, SiglipImageProcessor,
|
10 |
+
SiglipVisionModel)
|
11 |
+
|
12 |
+
from xtuner.dataset import LLaVADataset
|
13 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
14 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
15 |
+
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
|
16 |
+
from xtuner.engine.runner import TrainLoop
|
17 |
+
from xtuner.model import LLaVAModel
|
18 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
19 |
+
|
20 |
+
#######################################################################
|
21 |
+
# PART 1 Settings #
|
22 |
+
#######################################################################
|
23 |
+
# Model
|
24 |
+
llm_name_or_path = 'internlm/internlm2-chat-1_8b'
|
25 |
+
visual_encoder_name_or_path = 'google/siglip-so400m-patch14-384'
|
26 |
+
|
27 |
+
# Data
|
28 |
+
data_root = './'
|
29 |
+
data_path = data_root + 'LLaVA-Pretrain/blip_laion_cc_sbu_558k.json'
|
30 |
+
image_folder = data_root + 'LLaVA-Pretrain/images'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
32 |
+
max_length = int(2048 - (336 / 14)**2)
|
33 |
+
|
34 |
+
# Scheduler & Optimizer
|
35 |
+
batch_size = 16 # per_device
|
36 |
+
accumulative_counts = 4
|
37 |
+
dataloader_num_workers = 16
|
38 |
+
max_epochs = 1
|
39 |
+
optim_type = AdamW
|
40 |
+
lr = 1e-3
|
41 |
+
betas = (0.9, 0.999)
|
42 |
+
weight_decay = 0
|
43 |
+
max_norm = 1 # grad clip
|
44 |
+
warmup_ratio = 0.03
|
45 |
+
|
46 |
+
# Save
|
47 |
+
save_steps = 2000
|
48 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
49 |
+
|
50 |
+
# Evaluate the generation performance during the training
|
51 |
+
evaluation_freq = 2000
|
52 |
+
SYSTEM = ''
|
53 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
54 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
55 |
+
|
56 |
+
#######################################################################
|
57 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
58 |
+
#######################################################################
|
59 |
+
tokenizer = dict(
|
60 |
+
type=AutoTokenizer.from_pretrained,
|
61 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
62 |
+
trust_remote_code=True,
|
63 |
+
padding_side='right')
|
64 |
+
|
65 |
+
image_processor = dict(
|
66 |
+
type=SiglipImageProcessor.from_pretrained,
|
67 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
68 |
+
trust_remote_code=True)
|
69 |
+
|
70 |
+
model = dict(
|
71 |
+
type=LLaVAModel,
|
72 |
+
freeze_llm=True,
|
73 |
+
freeze_visual_encoder=True,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
visual_encoder=dict(
|
89 |
+
type=SiglipVisionModel.from_pretrained,
|
90 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
llava_dataset = dict(
|
96 |
+
type=LLaVADataset,
|
97 |
+
data_path=data_path,
|
98 |
+
image_folder=image_folder,
|
99 |
+
tokenizer=tokenizer,
|
100 |
+
image_processor=image_processor,
|
101 |
+
dataset_map_fn=llava_map_fn,
|
102 |
+
template_map_fn=dict(
|
103 |
+
type=template_map_fn_factory, template=prompt_template),
|
104 |
+
max_length=max_length,
|
105 |
+
pad_image_to_square=False)
|
106 |
+
|
107 |
+
train_dataloader = dict(
|
108 |
+
batch_size=batch_size,
|
109 |
+
num_workers=dataloader_num_workers,
|
110 |
+
dataset=llava_dataset,
|
111 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
112 |
+
collate_fn=dict(type=default_collate_fn))
|
113 |
+
|
114 |
+
#######################################################################
|
115 |
+
# PART 4 Scheduler & Optimizer #
|
116 |
+
#######################################################################
|
117 |
+
# optimizer
|
118 |
+
optim_wrapper = dict(
|
119 |
+
type=AmpOptimWrapper,
|
120 |
+
optimizer=dict(
|
121 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
122 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
123 |
+
accumulative_counts=accumulative_counts,
|
124 |
+
loss_scale='dynamic',
|
125 |
+
dtype='float16')
|
126 |
+
|
127 |
+
# learning policy
|
128 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
129 |
+
param_scheduler = [
|
130 |
+
dict(
|
131 |
+
type=LinearLR,
|
132 |
+
start_factor=1e-5,
|
133 |
+
by_epoch=True,
|
134 |
+
begin=0,
|
135 |
+
end=warmup_ratio * max_epochs,
|
136 |
+
convert_to_iter_based=True),
|
137 |
+
dict(
|
138 |
+
type=CosineAnnealingLR,
|
139 |
+
eta_min=0.0,
|
140 |
+
by_epoch=True,
|
141 |
+
begin=warmup_ratio * max_epochs,
|
142 |
+
end=max_epochs,
|
143 |
+
convert_to_iter_based=True)
|
144 |
+
]
|
145 |
+
|
146 |
+
# train, val, test setting
|
147 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
148 |
+
|
149 |
+
#######################################################################
|
150 |
+
# PART 5 Runtime #
|
151 |
+
#######################################################################
|
152 |
+
# Log the dialogue periodically during the training process, optional
|
153 |
+
custom_hooks = [
|
154 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
155 |
+
dict(
|
156 |
+
type=EvaluateChatHook,
|
157 |
+
tokenizer=tokenizer,
|
158 |
+
image_processor=image_processor,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
evaluation_images=evaluation_images,
|
162 |
+
system=SYSTEM,
|
163 |
+
prompt_template=prompt_template)
|
164 |
+
]
|
165 |
+
|
166 |
+
# configure default hooks
|
167 |
+
default_hooks = dict(
|
168 |
+
# record the time of every iteration.
|
169 |
+
timer=dict(type=IterTimerHook),
|
170 |
+
# print log every 10 iterations.
|
171 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
172 |
+
# enable the parameter scheduler.
|
173 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
174 |
+
# save checkpoint per `save_steps`.
|
175 |
+
checkpoint=dict(
|
176 |
+
type=CheckpointHook,
|
177 |
+
by_epoch=False,
|
178 |
+
interval=save_steps,
|
179 |
+
max_keep_ckpts=save_total_limit),
|
180 |
+
# set sampler seed in distributed evrionment.
|
181 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
182 |
+
)
|
183 |
+
|
184 |
+
# configure environment
|
185 |
+
env_cfg = dict(
|
186 |
+
# whether to enable cudnn benchmark
|
187 |
+
cudnn_benchmark=False,
|
188 |
+
# set multi process parameters
|
189 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
190 |
+
# set distributed parameters
|
191 |
+
dist_cfg=dict(backend='nccl'),
|
192 |
+
)
|
193 |
+
|
194 |
+
# set visualizer
|
195 |
+
from mmengine.visualization import Visualizer, TensorboardVisBackend
|
196 |
+
visualizer = dict(
|
197 |
+
type=Visualizer,
|
198 |
+
vis_backends=[dict(type=TensorboardVisBackend)]
|
199 |
+
)
|
200 |
+
|
201 |
+
# set log level
|
202 |
+
log_level = 'INFO'
|
203 |
+
|
204 |
+
# load from which checkpoint
|
205 |
+
load_from = None
|
206 |
+
|
207 |
+
# whether to resume training from the loaded checkpoint
|
208 |
+
resume = False
|
209 |
+
|
210 |
+
# Defaults to use random seed and disable `deterministic`
|
211 |
+
randomness = dict(seed=None, deterministic=False)
|
212 |
+
|
213 |
+
# set log processor
|
214 |
+
log_processor = dict(by_epoch=False)
|