Upload PPO LunarLander-v2 trained agent (1.5M steps)
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +7 -7
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 286.13 +/- 15.54
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ef8935670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ef8935700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ef8935790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ef8935820>", "_build": "<function ActorCriticPolicy._build at 0x7f8ef89358b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ef8935940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ef89359d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ef8935a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ef8935af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ef8935b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ef8935c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ef8935ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8ef892d870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673798798050029605, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA4wbzJnr0/vgehvoQjpj5qaDY9XtwYPgAAAAAAAAAAmiYvvWgguT9ixDu+8tzEvMY2dTw7oBi+AAAAAAAAAACaNn0+FswcP6jxHD8s72a/1QktvjQwijsAAAAAAAAAAM3n5jxwvq4/vY+KPitGgr5ZXTC8gBTXPAAAAAAAAAAAllKrPv42RT+WbJY+rA+Ov+a0Az8WIoQ+AAAAAAAAAABOPb6+83tDP3ZbhL85Onu/XCCZP3MKBj8AAAAAAAAAANYH9r6VgA8/tnctv163j7+w/zg+FkUgvQAAAAAAAAAAZtamu+MXrz/kkSe9TNCSvtynhz3zglU9AAAAAAAAAACevuu+ZIeOPpHoRb9Ch7W/CBT1PoLWFz4AAAAAAAAAAKC+vz4vF1E/G6ltP6YeT79oxre++QHIOwAAAAAAAAAAGlhcPSBVsz9G3wM/JhAXvt2btL1WN3q+AAAAAAAAAABrXxA/ynomPn6QBD7ZI6U8ATS3vx5TUb8AAAAAAAAAAJriOT7SrZQ/ao1BP0rSDr9Adra9U8EBvQAAAAAAAAAAMMeuPreuNT8Nl2c/s2Z+v705YL56EtG9AAAAAAAAAADNgIQ7c6yuP33U2DzAA4y+EqzQu30Ds7wAAAAAAAAAAJ6P274hJVk/aqxkv78zRr+F/0M/sHblPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGcqJdhVTYMCUhpRSlIwBbJRLcYwBdJRHQEaKFFlTWG11fZQoaAZoCWgPQwhi1ouhHOxhwJSGlFKUaBVLmGgWR0BGi/IKc/dJdX2UKGgGaAloD0MIsKvJU1bLVcCUhpRSlGgVS0VoFkdARpEIzFdcB3V9lChoBmgJaA9DCJkR3h5EMXnAlIaUUpRoFUtyaBZHQEaTDKoybhF1fZQoaAZoCWgPQwjc8/xpoxZlwJSGlFKUaBVLYGgWR0BGmAh8pkPMdX2UKGgGaAloD0MIOul942scYcCUhpRSlGgVSz9oFkdARqBM36yjYnV9lChoBmgJaA9DCPA0mfG2OXbAlIaUUpRoFUtmaBZHQEagE8q4H5d1fZQoaAZoCWgPQwhgOUIG8sNowJSGlFKUaBVLWmgWR0BGoyf16E8JdX2UKGgGaAloD0MI8pnsn6e4XMCUhpRSlGgVS3xoFkdARqTwc5sCT3V9lChoBmgJaA9DCHEEqRQ7FV3AlIaUUpRoFUuDaBZHQEaquNgjQiR1fZQoaAZoCWgPQwizmUNSC1ZcwJSGlFKUaBVLW2gWR0BGq7ZezD4ydX2UKGgGaAloD0MIoWmJlVFPY8CUhpRSlGgVS1BoFkdARqu6d1+y7nV9lChoBmgJaA9DCOJXrOEiu0rAlIaUUpRoFUt1aBZHQEauUFB6a9d1fZQoaAZoCWgPQwgw2A3bVitywJSGlFKUaBVLcGgWR0BGtGHgxagVdX2UKGgGaAloD0MI0Amhg249gMCUhpRSlGgVS1JoFkdARrQjhUBGQXV9lChoBmgJaA9DCJ63sdkRf2LAlIaUUpRoFUtbaBZHQEa2fPomoit1fZQoaAZoCWgPQwj0wTI2dNZcwJSGlFKUaBVLUGgWR0BGt/BFd9lVdX2UKGgGaAloD0MIL6cExKSmcsCUhpRSlGgVS2FoFkdARrhiLEUCaXV9lChoBmgJaA9DCENXIlD9rl/AlIaUUpRoFUuFaBZHQEa8+nIhhYx1fZQoaAZoCWgPQwjSjbCoiEhWwJSGlFKUaBVLYWgWR0BGwRe9i+cpdX2UKGgGaAloD0MIWn9LAP4lXMCUhpRSlGgVS0loFkdARsJLZi/fwnV9lChoBmgJaA9DCEoLl1WY2XbAlIaUUpRoFUtjaBZHQEbG0Q9RrJt1fZQoaAZoCWgPQwiWd9UD5lBWwJSGlFKUaBVLQGgWR0BGx4q5LAYYdX2UKGgGaAloD0MIkX77OnBvVMCUhpRSlGgVS0NoFkdARsmk56t1ZHV9lChoBmgJaA9DCOyIQzZQFXXAlIaUUpRoFUthaBZHQEbNL5hz/6x1fZQoaAZoCWgPQwjO3hltVTdiwJSGlFKUaBVLQmgWR0BG0WdVea8ZdX2UKGgGaAloD0MIbJOKxtrQUsCUhpRSlGgVS0JoFkdARtNvZRKpUHV9lChoBmgJaA9DCJS+EHLep1nAlIaUUpRoFUtKaBZHQEbU3iJfpll1fZQoaAZoCWgPQwjedwyP/Z16wJSGlFKUaBVLdGgWR0BG2JSzgMtsdX2UKGgGaAloD0MIGavN/yu9eMCUhpRSlGgVS2ZoFkdARtnTVlPJrHV9lChoBmgJaA9DCPpGdM+68FfAlIaUUpRoFUtPaBZHQEbbk2gnMMZ1fZQoaAZoCWgPQwihE0IH3WZkwJSGlFKUaBVLRWgWR0BG3JrtVrAQdX2UKGgGaAloD0MIlBKCVfWtWMCUhpRSlGgVS2poFkdARt5IOH31z3V9lChoBmgJaA9DCLZI2o0+k1/AlIaUUpRoFUt/aBZHQEbfhb4agmJ1fZQoaAZoCWgPQwhQwkzbvyRuwJSGlFKUaBVLW2gWR0BG4XQla8pTdX2UKGgGaAloD0MI3nGKjuSEUMCUhpRSlGgVS05oFkdARuR8+iaiK3V9lChoBmgJaA9DCO/mqQ65L1jAlIaUUpRoFUtOaBZHQEbmF6iTMaF1fZQoaAZoCWgPQwjK3lLO18d+wJSGlFKUaBVLWmgWR0BG8OeBg/kedX2UKGgGaAloD0MIOuenOI4+asCUhpRSlGgVS1toFkdARvRpJwsGxHV9lChoBmgJaA9DCOSECaNZC07AlIaUUpRoFUtJaBZHQEb3sdDIBBB1fZQoaAZoCWgPQwiAEMmQo1l4wJSGlFKUaBVLYWgWR0BG+vZh8YygdX2UKGgGaAloD0MIU7ExryPPZsCUhpRSlGgVS3RoFkdARv3aYeDFqHV9lChoBmgJaA9DCCVZh6MrAmPAlIaUUpRoFUtSaBZHQEb/aJQ+EAZ1fZQoaAZoCWgPQwj8qlyofHdowJSGlFKUaBVLY2gWR0BHAI3aSLZSdX2UKGgGaAloD0MIwYwpWONyVcCUhpRSlGgVS1NoFkdARwERxtHhCXV9lChoBmgJaA9DCESoUrOHUmPAlIaUUpRoFUtPaBZHQEcEuez2OAB1fZQoaAZoCWgPQwhn7bYLDbJywJSGlFKUaBVLWGgWR0BHBSlN1yNodX2UKGgGaAloD0MIMSQnE7c/X8CUhpRSlGgVS19oFkdARwky+HrQgXV9lChoBmgJaA9DCGt+/KUFvXjAlIaUUpRoFUteaBZHQEcKdrftQbd1fZQoaAZoCWgPQwhGCfoLvUhgwJSGlFKUaBVLVWgWR0BHDP7N0NjLdX2UKGgGaAloD0MIr5emCDCkfMCUhpRSlGgVS2VoFkdARxGDxsl9jXV9lChoBmgJaA9DCKH2WztRxl/AlIaUUpRoFUtKaBZHQEcT+2E0zj51fZQoaAZoCWgPQwgCDMuf705wwJSGlFKUaBVLYWgWR0BHFHB1s+FDdX2UKGgGaAloD0MI9E4F3HN9YsCUhpRSlGgVS45oFkdARxb3225QQHV9lChoBmgJaA9DCHptNlZiIVTAlIaUUpRoFUs9aBZHQEcX49ovi991fZQoaAZoCWgPQwjK/KNv0nBRwJSGlFKUaBVLP2gWR0BHHXFtKqXGdX2UKGgGaAloD0MIvHmqQ24BYcCUhpRSlGgVS2VoFkdARyLQmeDnNnV9lChoBmgJaA9DCJgXYB+drWTAlIaUUpRoFUtGaBZHQEck7ihnJ1d1fZQoaAZoCWgPQwjqIRrdgad3wJSGlFKUaBVLVmgWR0BHKKyOaOPvdX2UKGgGaAloD0MIVkrP9BK+e8CUhpRSlGgVS1ZoFkdARyyJuVHFxXV9lChoBmgJaA9DCA2poniVHl7AlIaUUpRoFUtNaBZHQEct2g3974V1fZQoaAZoCWgPQwhklj0JbKJZwJSGlFKUaBVLQmgWR0BHL2GZeAuqdX2UKGgGaAloD0MI14nL8QpiXsCUhpRSlGgVS2loFkdARy/j2i+L33V9lChoBmgJaA9DCLD/OjetGnHAlIaUUpRoFUtHaBZHQEc0WjXWe6J1fZQoaAZoCWgPQwgOnglNEtBYwJSGlFKUaBVLfGgWR0BHNvAwfyPNdX2UKGgGaAloD0MIx9eeWRJuU8CUhpRSlGgVS11oFkdARzfCsOoYN3V9lChoBmgJaA9DCCEGuvYFKlHAlIaUUpRoFUtPaBZHQEc3zjm0VrR1fZQoaAZoCWgPQwgomgewyFhuwJSGlFKUaBVLkGgWR0BHOkhib2DhdX2UKGgGaAloD0MI+Db92Y/oXcCUhpRSlGgVS2poFkdARzortmcvunV9lChoBmgJaA9DCNrJ4Ch5BF3AlIaUUpRoFUtVaBZHQEc9VvuPV/d1fZQoaAZoCWgPQwgDPj+M0Bp6wJSGlFKUaBVLVWgWR0BHPjLKV6eHdX2UKGgGaAloD0MI+1ksRfJ7S8CUhpRSlGgVS2hoFkdAR0vmPo3aSXV9lChoBmgJaA9DCCFzZVBtGWbAlIaUUpRoFUtAaBZHQEdLxEv0yxl1fZQoaAZoCWgPQwhwCcA/pSFfwJSGlFKUaBVLUWgWR0BHTIRh+fAcdX2UKGgGaAloD0MI72/QXn1VYMCUhpRSlGgVS0toFkdAR03arWAf+3V9lChoBmgJaA9DCNfdPNWhpmXAlIaUUpRoFUtlaBZHQEdSBo24usd1fZQoaAZoCWgPQwgEj2/vWnZ2wJSGlFKUaBVLWWgWR0BHVvLowEhadX2UKGgGaAloD0MI6j4Aqc0GeMCUhpRSlGgVS39oFkdAR1yTUy57PnV9lChoBmgJaA9DCN5y9WNTdHfAlIaUUpRoFUtoaBZHQEdczKLbYbt1fZQoaAZoCWgPQwgdVyO70ptgwJSGlFKUaBVLTWgWR0BHXNG3F1jidX2UKGgGaAloD0MITvIjfsUvWsCUhpRSlGgVS15oFkdAR2Fz+3pfQnV9lChoBmgJaA9DCOENaVTg8mLAlIaUUpRoFUtZaBZHQEdiLm6oVEd1fZQoaAZoCWgPQwjBAMKHknFjwJSGlFKUaBVLYWgWR0BHaYNZvDP4dX2UKGgGaAloD0MI/+px32pRW8CUhpRSlGgVSzpoFkdAR28V8CxNZnV9lChoBmgJaA9DCInrGFdcPmbAlIaUUpRoFUtOaBZHQEdygFotcwB1fZQoaAZoCWgPQwjs3R/vlZtwwJSGlFKUaBVLfWgWR0BHcobwSamXdX2UKGgGaAloD0MI5qxPOSaCY8CUhpRSlGgVS4RoFkdAR3KOLiuMdnV9lChoBmgJaA9DCJ7TLNDuzVjAlIaUUpRoFUtyaBZHQEd0UkfLcKx1fZQoaAZoCWgPQwhIaqFkck9jwJSGlFKUaBVLgGgWR0BHdBjOLR8ddX2UKGgGaAloD0MIEHaKVYMaUsCUhpRSlGgVSz1oFkdAR3WqNp/PPnV9lChoBmgJaA9DCOFembfquGrAlIaUUpRoFUtHaBZHQEd/bnHNorZ1fZQoaAZoCWgPQwjysFBrmvRbwJSGlFKUaBVLbmgWR0BHgR1HOKO1dX2UKGgGaAloD0MISWb1DrfFYcCUhpRSlGgVS3BoFkdAR4LO3UhFE3V9lChoBmgJaA9DCE/pYP3fm37AlIaUUpRoFUt5aBZHQEeIaS9ugpV1fZQoaAZoCWgPQwh7n6pCA8VZwJSGlFKUaBVLXmgWR0BHiq5LAYYSdX2UKGgGaAloD0MIt2PqruyQc8CUhpRSlGgVS0doFkdAR4yuW8h9s3V9lChoBmgJaA9DCHI0R1b+V3rAlIaUUpRoFUteaBZHQEeQU0vXbud1fZQoaAZoCWgPQwgLJv4o6sJawJSGlFKUaBVLbGgWR0BHkcGTs6aLdX2UKGgGaAloD0MIpfRMLzGBYsCUhpRSlGgVS0poFkdAR5KckMTewnV9lChoBmgJaA9DCDjXMENjC2TAlIaUUpRoFUtCaBZHQEeT3lCCz1N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ef8935670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ef8935700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ef8935790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ef8935820>", "_build": "<function ActorCriticPolicy._build at 0x7f8ef89358b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ef8935940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ef89359d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ef8935a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ef8935af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ef8935b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ef8935c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ef8935ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8ef892d870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673798994327196615, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPoWK74pyUS8/tKRu3yN4blciaY9puC4OgAAgD8AAIA/8y++PWGYmj820xk/YBcXv58CRz0gSGE+AAAAAAAAAAAzr+I8lOHlPYXZ0zwg5pO+1wP1PPQltL0AAAAAAAAAAJonxTyWqQ8/+Fw0vGn8zb5rqzS8dqiEPQAAAAAAAAAA5t+dPQMwQD+6YR29iRu5vrkZcT1riGu9AAAAAAAAAAAA6Ek89hwmuqyqMbTun0WvetV3Om1NrjMAAIA/AACAPwBIyL16rkg+8cu8Pu2Qmr6VI3E+9q+ePQAAAAAAAAAAzYR5vHH8Vbs644g7nGyPPNIFzzyQ6XW9AACAPwAAgD9WWFy+WTYNPxq9kD5cz86+Rvw0vcB44j0AAAAAAAAAAM22g7ypclA9pmi1vPsaiL7cM6880hcUvAAAAAAAAAAAoCQVPnnatT/akPc+AEqivn3prD4EKYY+AAAAAAAAAAAzkkY9GAOKPjwYHD18c3q+EsmsPBrMPLsAAAAAAAAAADqsPz7Cgoc/0TYUPwFaCb+eoVQ+DPmjPgAAAAAAAAAAswYAvcY6sz/UHUO+TTlUvoa/J7s0Qgm+AAAAAAAAAADAV/o9mr6nP2iISz5q7fO+7gNMPvPiYr0AAAAAAAAAAADaY7wOI7I/RqjpvnQyn74fBiw8KgjWPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjgHZ651hckCUhpRSlIwBbJRNAAGMAXSUR0CbD0v4M4LkdX2UKGgGaAloD0MIhxdEpCaYc0CUhpRSlGgVS+5oFkdAmxBHB1s+FHV9lChoBmgJaA9DCPvnacCgYXBAlIaUUpRoFUvmaBZHQJsRB+OOsDJ1fZQoaAZoCWgPQwiS6dDp+RNyQJSGlFKUaBVL+GgWR0CbEXdv863idX2UKGgGaAloD0MI06V/SWoDc0CUhpRSlGgVS81oFkdAmxG1hkRSP3V9lChoBmgJaA9DCDTyecUTUXBAlIaUUpRoFUv1aBZHQJsRzf779AJ1fZQoaAZoCWgPQwgoRwGioFNyQJSGlFKUaBVL5mgWR0CbEmSIP9UCdX2UKGgGaAloD0MI1o7iHLUCcUCUhpRSlGgVS9ZoFkdAmxOmZE2HcnV9lChoBmgJaA9DCLItA87SCW5AlIaUUpRoFUvvaBZHQJsT5oWYWtV1fZQoaAZoCWgPQwiXcymuaoFxQJSGlFKUaBVL+WgWR0CbFAARTS9edX2UKGgGaAloD0MIpDmy8ss/ckCUhpRSlGgVS+xoFkdAmxQO85CF9XV9lChoBmgJaA9DCKLvbmVJ5nBAlIaUUpRoFU0EAWgWR0CbFHGBnSOSdX2UKGgGaAloD0MIfNXKhF8Kb0CUhpRSlGgVS/toFkdAmxVROxjawnV9lChoBmgJaA9DCNGUnX7Q0m5AlIaUUpRoFUvqaBZHQJsVYLc9GI91fZQoaAZoCWgPQwg8FAX6RFRCQJSGlFKUaBVLlmgWR0CbFWwyIpH7dX2UKGgGaAloD0MIzPEKRA81ckCUhpRSlGgVS+doFkdAmxYTshPj43V9lChoBmgJaA9DCIkkehlF029AlIaUUpRoFU0DAWgWR0CbFhl18stkdX2UKGgGaAloD0MInx7bMuAtckCUhpRSlGgVTQgBaBZHQJsXxW912aF1fZQoaAZoCWgPQwiSPULN0EhwQJSGlFKUaBVL52gWR0CbGCR2r4nGdX2UKGgGaAloD0MIXaRQFj5XcECUhpRSlGgVS/hoFkdAmxhoOMERrnV9lChoBmgJaA9DCB2Txf1HQHJAlIaUUpRoFU0SAWgWR0CbGXUNKAavdX2UKGgGaAloD0MIvvc3aC/CcECUhpRSlGgVTQwBaBZHQJsZ4o0ALiN1fZQoaAZoCWgPQwgychb2dERzQJSGlFKUaBVL2mgWR0CbGgiRW912dX2UKGgGaAloD0MIknTN5NvJckCUhpRSlGgVS+FoFkdAmxotb1RLsnV9lChoBmgJaA9DCC43GOqwiHJAlIaUUpRoFUveaBZHQJsakGLUCq91fZQoaAZoCWgPQwiIodXJmWttQJSGlFKUaBVL+mgWR0CbGpjBl+VkdX2UKGgGaAloD0MIxjAnaJNib0CUhpRSlGgVS/1oFkdAmxrdHxz7uXV9lChoBmgJaA9DCBqjdVT1nnJAlIaUUpRoFUvraBZHQJsbqtCAtnR1fZQoaAZoCWgPQwgDlfHvMw5vQJSGlFKUaBVL8GgWR0CbG+YfnwG4dX2UKGgGaAloD0MIsTOFzqthcUCUhpRSlGgVS+JoFkdAmxw6wpvxY3V9lChoBmgJaA9DCIWZtn+lV3JAlIaUUpRoFU0GAWgWR0CbHGdHDrJKdX2UKGgGaAloD0MI7ded7jyQcUCUhpRSlGgVTRABaBZHQJswg4LkS291fZQoaAZoCWgPQwjjiouj8jVvQJSGlFKUaBVL7mgWR0CbMWHYHxBmdX2UKGgGaAloD0MI4h5LH/oOckCUhpRSlGgVS+RoFkdAmzFxVZLZjHV9lChoBmgJaA9DCI+n5Qeuy25AlIaUUpRoFUviaBZHQJsxovg3tKJ1fZQoaAZoCWgPQwig+3JmexxzQJSGlFKUaBVL0GgWR0CbMoCQtBfKdX2UKGgGaAloD0MIFW9kHrkOckCUhpRSlGgVS9doFkdAmzLU6o2n9HV9lChoBmgJaA9DCE4oRMBhI3JAlIaUUpRoFUvuaBZHQJsy6BXjlxR1fZQoaAZoCWgPQwggzy7fepttQJSGlFKUaBVL8mgWR0CbM64+KTB7dX2UKGgGaAloD0MIWp9yTBamZECUhpRSlGgVTegDaBZHQJsz05XEIgN1fZQoaAZoCWgPQwjK/nkaMNhzQJSGlFKUaBVL72gWR0CbND7NjbztdX2UKGgGaAloD0MIRwN4C+SncUCUhpRSlGgVS9doFkdAmzR6m8/Uv3V9lChoBmgJaA9DCIfEPZa+6m1AlIaUUpRoFU0GAWgWR0CbNI5ggHNYdX2UKGgGaAloD0MIfjhIiPJ5bECUhpRSlGgVTRgBaBZHQJs08Fpwjt51fZQoaAZoCWgPQwh9IeS8PxRyQJSGlFKUaBVL8mgWR0CbNZwd8zAOdX2UKGgGaAloD0MI2uIan4kVcECUhpRSlGgVS/ZoFkdAmzXkO/cnE3V9lChoBmgJaA9DCDwtP3BVoXBAlIaUUpRoFU0YAWgWR0CbNjVQyhzvdX2UKGgGaAloD0MINuhLbz8wckCUhpRSlGgVS+hoFkdAmzZt2ovSMXV9lChoBmgJaA9DCKg1zTuOpHFAlIaUUpRoFUvyaBZHQJs3aieumrN1fZQoaAZoCWgPQwjDnKBNzqdwQJSGlFKUaBVL/GgWR0CbN5ujynUEdX2UKGgGaAloD0MIEvjDzz+4cUCUhpRSlGgVS+loFkdAmzgx0hePaXV9lChoBmgJaA9DCPDErBcDsXNAlIaUUpRoFU0MAWgWR0CbODs4T9KmdX2UKGgGaAloD0MI9DP1ukW6cECUhpRSlGgVS+loFkdAmzibROUMX3V9lChoBmgJaA9DCDgwuVGkinFAlIaUUpRoFUvWaBZHQJs485Jbt7d1fZQoaAZoCWgPQwhIbk26LQVwQJSGlFKUaBVL9mgWR0CbOQSiudPMdX2UKGgGaAloD0MIp7OTwZEdc0CUhpRSlGgVS9ZoFkdAmzkS8zyjHnV9lChoBmgJaA9DCD5d3bEYBHNAlIaUUpRoFUvraBZHQJs59NHpbEB1fZQoaAZoCWgPQwiL4eoAiPxwQJSGlFKUaBVL+mgWR0CbOo2JSBK+dX2UKGgGaAloD0MIWBr4Uc31cECUhpRSlGgVS+toFkdAmzqtLlFMI3V9lChoBmgJaA9DCHKlngXh4nBAlIaUUpRoFUv9aBZHQJs6tT72tdR1fZQoaAZoCWgPQwgw9l580RpyQJSGlFKUaBVLy2gWR0CbO3AZsKsudX2UKGgGaAloD0MIrUuN0I9Uc0CUhpRSlGgVTQoBaBZHQJs8KGahHsl1fZQoaAZoCWgPQwjwoxr2+0lxQJSGlFKUaBVNAwFoFkdAmzxGWldka3V9lChoBmgJaA9DCFb18jsNXHBAlIaUUpRoFUv5aBZHQJs8XmYBvJl1fZQoaAZoCWgPQwjONjemJwxwQJSGlFKUaBVL7mgWR0CbPVXY150KdX2UKGgGaAloD0MIexFtxxRecUCUhpRSlGgVS+5oFkdAmz2Jgb6xgXV9lChoBmgJaA9DCBBdUN/yZHNAlIaUUpRoFUvraBZHQJs+FZid8Rd1fZQoaAZoCWgPQwgMc4I2+fxwQJSGlFKUaBVLzmgWR0CbPh9sabWmdX2UKGgGaAloD0MI6SyzCIUmckCUhpRSlGgVS+toFkdAmz4frv9cbHV9lChoBmgJaA9DCPewFwpYh21AlIaUUpRoFUvdaBZHQJs+aHbh3q11fZQoaAZoCWgPQwh5dY4BWXlwQJSGlFKUaBVL7WgWR0CbPrR3/xUedX2UKGgGaAloD0MIIxRbQRNYc0CUhpRSlGgVTQgBaBZHQJs/AOhCdBl1fZQoaAZoCWgPQwjDu1zEN1hxQJSGlFKUaBVL02gWR0CbP6BdUsFudX2UKGgGaAloD0MI93ghHZ5fcUCUhpRSlGgVS/5oFkdAm0AbbUPQOXV9lChoBmgJaA9DCJG28SdqkHJAlIaUUpRoFUvsaBZHQJtAXsdDIBB1fZQoaAZoCWgPQwinWDUIsyBwQJSGlFKUaBVL82gWR0CbQI5/b0vodX2UKGgGaAloD0MIZoUi3U+9ckCUhpRSlGgVTQUBaBZHQJtBw2WIGhV1fZQoaAZoCWgPQwglPneCvTlwQJSGlFKUaBVL82gWR0CbQg3os7MgdX2UKGgGaAloD0MI/I7hsR8yckCUhpRSlGgVTQABaBZHQJtCeuaF23d1fZQoaAZoCWgPQwijrN9MDA5xQJSGlFKUaBVNDAFoFkdAm0LkgW8AaXV9lChoBmgJaA9DCGHEPgEUYnFAlIaUUpRoFUvZaBZHQJtDbDqGDcx1fZQoaAZoCWgPQwil12Zj5bpyQJSGlFKUaBVL9mgWR0CbQ2zhxYJWdX2UKGgGaAloD0MILxfxndiFc0CUhpRSlGgVS+FoFkdAm0OtVWCEpXV9lChoBmgJaA9DCJ6zBYRWNXFAlIaUUpRoFUvlaBZHQJtDyC+UQkJ1fZQoaAZoCWgPQwj3yrxVFzFwQJSGlFKUaBVL/GgWR0CbQ8rEcbR4dX2UKGgGaAloD0MIby9pjBYhcECUhpRSlGgVS95oFkdAm0PoQjD8+HV9lChoBmgJaA9DCGlVSzpK3HJAlIaUUpRoFUvgaBZHQJtFM3fhuO11fZQoaAZoCWgPQwhq3nGKDuRzQJSGlFKUaBVNFwFoFkdAm0WRPbfxc3V9lChoBmgJaA9DCLH5uDZUbHJAlIaUUpRoFUvgaBZHQJtFrisGPgh1fZQoaAZoCWgPQwgvhQfN7hNwQJSGlFKUaBVL82gWR0CbRnnNgSezdX2UKGgGaAloD0MImkF8YAdTckCUhpRSlGgVTQABaBZHQJtG+VgQYk51fZQoaAZoCWgPQwj7kLdcPU9yQJSGlFKUaBVL02gWR0CbR1SnLq2SdX2UKGgGaAloD0MIBwd7E8MAbkCUhpRSlGgVS+xoFkdAm0fIgaFVUHV9lChoBmgJaA9DCG+Cb5o+r3FAlIaUUpRoFUvraBZHQJtIeXOW0JF1fZQoaAZoCWgPQwjPukbLwbRxQJSGlFKUaBVL2GgWR0CbSOERJ2+xdX2UKGgGaAloD0MIWDfeHZmAcECUhpRSlGgVS9loFkdAm0lrj1f3OHV9lChoBmgJaA9DCKiPwB9+eHFAlIaUUpRoFU0AAWgWR0CbSXK5TZQIdX2UKGgGaAloD0MIHqM88/Kdc0CUhpRSlGgVS+xoFkdAm0nDtkWhy3V9lChoBmgJaA9DCKSIDKu4LXNAlIaUUpRoFUv6aBZHQJtJxzCDVYp1fZQoaAZoCWgPQwieYP91LtRwQJSGlFKUaBVL92gWR0CbSgi+L3sYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:410ac0baab539763648c3ed5889a95c434a39fdc61e5ed09d15bcf36eae871e2
|
3 |
+
size 147322
|
ppo-LunarLander-v2/data
CHANGED
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1507328,
|
47 |
+
"_total_timesteps": 1500000.0,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1673798994327196615,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPoWK74pyUS8/tKRu3yN4blciaY9puC4OgAAgD8AAIA/8y++PWGYmj820xk/YBcXv58CRz0gSGE+AAAAAAAAAAAzr+I8lOHlPYXZ0zwg5pO+1wP1PPQltL0AAAAAAAAAAJonxTyWqQ8/+Fw0vGn8zb5rqzS8dqiEPQAAAAAAAAAA5t+dPQMwQD+6YR29iRu5vrkZcT1riGu9AAAAAAAAAAAA6Ek89hwmuqyqMbTun0WvetV3Om1NrjMAAIA/AACAPwBIyL16rkg+8cu8Pu2Qmr6VI3E+9q+ePQAAAAAAAAAAzYR5vHH8Vbs644g7nGyPPNIFzzyQ6XW9AACAPwAAgD9WWFy+WTYNPxq9kD5cz86+Rvw0vcB44j0AAAAAAAAAAM22g7ypclA9pmi1vPsaiL7cM6880hcUvAAAAAAAAAAAoCQVPnnatT/akPc+AEqivn3prD4EKYY+AAAAAAAAAAAzkkY9GAOKPjwYHD18c3q+EsmsPBrMPLsAAAAAAAAAADqsPz7Cgoc/0TYUPwFaCb+eoVQ+DPmjPgAAAAAAAAAAswYAvcY6sz/UHUO+TTlUvoa/J7s0Qgm+AAAAAAAAAADAV/o9mr6nP2iISz5q7fO+7gNMPvPiYr0AAAAAAAAAAADaY7wOI7I/RqjpvnQyn74fBiw8KgjWPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.004885333333333408,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjgHZ651hckCUhpRSlIwBbJRNAAGMAXSUR0CbD0v4M4LkdX2UKGgGaAloD0MIhxdEpCaYc0CUhpRSlGgVS+5oFkdAmxBHB1s+FHV9lChoBmgJaA9DCPvnacCgYXBAlIaUUpRoFUvmaBZHQJsRB+OOsDJ1fZQoaAZoCWgPQwiS6dDp+RNyQJSGlFKUaBVL+GgWR0CbEXdv863idX2UKGgGaAloD0MI06V/SWoDc0CUhpRSlGgVS81oFkdAmxG1hkRSP3V9lChoBmgJaA9DCDTyecUTUXBAlIaUUpRoFUv1aBZHQJsRzf779AJ1fZQoaAZoCWgPQwgoRwGioFNyQJSGlFKUaBVL5mgWR0CbEmSIP9UCdX2UKGgGaAloD0MI1o7iHLUCcUCUhpRSlGgVS9ZoFkdAmxOmZE2HcnV9lChoBmgJaA9DCLItA87SCW5AlIaUUpRoFUvvaBZHQJsT5oWYWtV1fZQoaAZoCWgPQwiXcymuaoFxQJSGlFKUaBVL+WgWR0CbFAARTS9edX2UKGgGaAloD0MIpDmy8ss/ckCUhpRSlGgVS+xoFkdAmxQO85CF9XV9lChoBmgJaA9DCKLvbmVJ5nBAlIaUUpRoFU0EAWgWR0CbFHGBnSOSdX2UKGgGaAloD0MIfNXKhF8Kb0CUhpRSlGgVS/toFkdAmxVROxjawnV9lChoBmgJaA9DCNGUnX7Q0m5AlIaUUpRoFUvqaBZHQJsVYLc9GI91fZQoaAZoCWgPQwg8FAX6RFRCQJSGlFKUaBVLlmgWR0CbFWwyIpH7dX2UKGgGaAloD0MIzPEKRA81ckCUhpRSlGgVS+doFkdAmxYTshPj43V9lChoBmgJaA9DCIkkehlF029AlIaUUpRoFU0DAWgWR0CbFhl18stkdX2UKGgGaAloD0MInx7bMuAtckCUhpRSlGgVTQgBaBZHQJsXxW912aF1fZQoaAZoCWgPQwiSPULN0EhwQJSGlFKUaBVL52gWR0CbGCR2r4nGdX2UKGgGaAloD0MIXaRQFj5XcECUhpRSlGgVS/hoFkdAmxhoOMERrnV9lChoBmgJaA9DCB2Txf1HQHJAlIaUUpRoFU0SAWgWR0CbGXUNKAavdX2UKGgGaAloD0MIvvc3aC/CcECUhpRSlGgVTQwBaBZHQJsZ4o0ALiN1fZQoaAZoCWgPQwgychb2dERzQJSGlFKUaBVL2mgWR0CbGgiRW912dX2UKGgGaAloD0MIknTN5NvJckCUhpRSlGgVS+FoFkdAmxotb1RLsnV9lChoBmgJaA9DCC43GOqwiHJAlIaUUpRoFUveaBZHQJsakGLUCq91fZQoaAZoCWgPQwiIodXJmWttQJSGlFKUaBVL+mgWR0CbGpjBl+VkdX2UKGgGaAloD0MIxjAnaJNib0CUhpRSlGgVS/1oFkdAmxrdHxz7uXV9lChoBmgJaA9DCBqjdVT1nnJAlIaUUpRoFUvraBZHQJsbqtCAtnR1fZQoaAZoCWgPQwgDlfHvMw5vQJSGlFKUaBVL8GgWR0CbG+YfnwG4dX2UKGgGaAloD0MIsTOFzqthcUCUhpRSlGgVS+JoFkdAmxw6wpvxY3V9lChoBmgJaA9DCIWZtn+lV3JAlIaUUpRoFU0GAWgWR0CbHGdHDrJKdX2UKGgGaAloD0MI7ded7jyQcUCUhpRSlGgVTRABaBZHQJswg4LkS291fZQoaAZoCWgPQwjjiouj8jVvQJSGlFKUaBVL7mgWR0CbMWHYHxBmdX2UKGgGaAloD0MI4h5LH/oOckCUhpRSlGgVS+RoFkdAmzFxVZLZjHV9lChoBmgJaA9DCI+n5Qeuy25AlIaUUpRoFUviaBZHQJsxovg3tKJ1fZQoaAZoCWgPQwig+3JmexxzQJSGlFKUaBVL0GgWR0CbMoCQtBfKdX2UKGgGaAloD0MIFW9kHrkOckCUhpRSlGgVS9doFkdAmzLU6o2n9HV9lChoBmgJaA9DCE4oRMBhI3JAlIaUUpRoFUvuaBZHQJsy6BXjlxR1fZQoaAZoCWgPQwggzy7fepttQJSGlFKUaBVL8mgWR0CbM64+KTB7dX2UKGgGaAloD0MIWp9yTBamZECUhpRSlGgVTegDaBZHQJsz05XEIgN1fZQoaAZoCWgPQwjK/nkaMNhzQJSGlFKUaBVL72gWR0CbND7NjbztdX2UKGgGaAloD0MIRwN4C+SncUCUhpRSlGgVS9doFkdAmzR6m8/Uv3V9lChoBmgJaA9DCIfEPZa+6m1AlIaUUpRoFU0GAWgWR0CbNI5ggHNYdX2UKGgGaAloD0MIfjhIiPJ5bECUhpRSlGgVTRgBaBZHQJs08Fpwjt51fZQoaAZoCWgPQwh9IeS8PxRyQJSGlFKUaBVL8mgWR0CbNZwd8zAOdX2UKGgGaAloD0MI2uIan4kVcECUhpRSlGgVS/ZoFkdAmzXkO/cnE3V9lChoBmgJaA9DCDwtP3BVoXBAlIaUUpRoFU0YAWgWR0CbNjVQyhzvdX2UKGgGaAloD0MINuhLbz8wckCUhpRSlGgVS+hoFkdAmzZt2ovSMXV9lChoBmgJaA9DCKg1zTuOpHFAlIaUUpRoFUvyaBZHQJs3aieumrN1fZQoaAZoCWgPQwjDnKBNzqdwQJSGlFKUaBVL/GgWR0CbN5ujynUEdX2UKGgGaAloD0MIEvjDzz+4cUCUhpRSlGgVS+loFkdAmzgx0hePaXV9lChoBmgJaA9DCPDErBcDsXNAlIaUUpRoFU0MAWgWR0CbODs4T9KmdX2UKGgGaAloD0MI9DP1ukW6cECUhpRSlGgVS+loFkdAmzibROUMX3V9lChoBmgJaA9DCDgwuVGkinFAlIaUUpRoFUvWaBZHQJs485Jbt7d1fZQoaAZoCWgPQwhIbk26LQVwQJSGlFKUaBVL9mgWR0CbOQSiudPMdX2UKGgGaAloD0MIp7OTwZEdc0CUhpRSlGgVS9ZoFkdAmzkS8zyjHnV9lChoBmgJaA9DCD5d3bEYBHNAlIaUUpRoFUvraBZHQJs59NHpbEB1fZQoaAZoCWgPQwiL4eoAiPxwQJSGlFKUaBVL+mgWR0CbOo2JSBK+dX2UKGgGaAloD0MIWBr4Uc31cECUhpRSlGgVS+toFkdAmzqtLlFMI3V9lChoBmgJaA9DCHKlngXh4nBAlIaUUpRoFUv9aBZHQJs6tT72tdR1fZQoaAZoCWgPQwgw9l580RpyQJSGlFKUaBVLy2gWR0CbO3AZsKsudX2UKGgGaAloD0MIrUuN0I9Uc0CUhpRSlGgVTQoBaBZHQJs8KGahHsl1fZQoaAZoCWgPQwjwoxr2+0lxQJSGlFKUaBVNAwFoFkdAmzxGWldka3V9lChoBmgJaA9DCFb18jsNXHBAlIaUUpRoFUv5aBZHQJs8XmYBvJl1fZQoaAZoCWgPQwjONjemJwxwQJSGlFKUaBVL7mgWR0CbPVXY150KdX2UKGgGaAloD0MIexFtxxRecUCUhpRSlGgVS+5oFkdAmz2Jgb6xgXV9lChoBmgJaA9DCBBdUN/yZHNAlIaUUpRoFUvraBZHQJs+FZid8Rd1fZQoaAZoCWgPQwgMc4I2+fxwQJSGlFKUaBVLzmgWR0CbPh9sabWmdX2UKGgGaAloD0MI6SyzCIUmckCUhpRSlGgVS+toFkdAmz4frv9cbHV9lChoBmgJaA9DCPewFwpYh21AlIaUUpRoFUvdaBZHQJs+aHbh3q11fZQoaAZoCWgPQwh5dY4BWXlwQJSGlFKUaBVL7WgWR0CbPrR3/xUedX2UKGgGaAloD0MIIxRbQRNYc0CUhpRSlGgVTQgBaBZHQJs/AOhCdBl1fZQoaAZoCWgPQwjDu1zEN1hxQJSGlFKUaBVL02gWR0CbP6BdUsFudX2UKGgGaAloD0MI93ghHZ5fcUCUhpRSlGgVS/5oFkdAm0AbbUPQOXV9lChoBmgJaA9DCJG28SdqkHJAlIaUUpRoFUvsaBZHQJtAXsdDIBB1fZQoaAZoCWgPQwinWDUIsyBwQJSGlFKUaBVL82gWR0CbQI5/b0vodX2UKGgGaAloD0MIZoUi3U+9ckCUhpRSlGgVTQUBaBZHQJtBw2WIGhV1fZQoaAZoCWgPQwglPneCvTlwQJSGlFKUaBVL82gWR0CbQg3os7MgdX2UKGgGaAloD0MI/I7hsR8yckCUhpRSlGgVTQABaBZHQJtCeuaF23d1fZQoaAZoCWgPQwijrN9MDA5xQJSGlFKUaBVNDAFoFkdAm0LkgW8AaXV9lChoBmgJaA9DCGHEPgEUYnFAlIaUUpRoFUvZaBZHQJtDbDqGDcx1fZQoaAZoCWgPQwil12Zj5bpyQJSGlFKUaBVL9mgWR0CbQ2zhxYJWdX2UKGgGaAloD0MILxfxndiFc0CUhpRSlGgVS+FoFkdAm0OtVWCEpXV9lChoBmgJaA9DCJ6zBYRWNXFAlIaUUpRoFUvlaBZHQJtDyC+UQkJ1fZQoaAZoCWgPQwj3yrxVFzFwQJSGlFKUaBVL/GgWR0CbQ8rEcbR4dX2UKGgGaAloD0MIby9pjBYhcECUhpRSlGgVS95oFkdAm0PoQjD8+HV9lChoBmgJaA9DCGlVSzpK3HJAlIaUUpRoFUvgaBZHQJtFM3fhuO11fZQoaAZoCWgPQwhq3nGKDuRzQJSGlFKUaBVNFwFoFkdAm0WRPbfxc3V9lChoBmgJaA9DCLH5uDZUbHJAlIaUUpRoFUvgaBZHQJtFrisGPgh1fZQoaAZoCWgPQwgvhQfN7hNwQJSGlFKUaBVL82gWR0CbRnnNgSezdX2UKGgGaAloD0MImkF8YAdTckCUhpRSlGgVTQABaBZHQJtG+VgQYk51fZQoaAZoCWgPQwj7kLdcPU9yQJSGlFKUaBVL02gWR0CbR1SnLq2SdX2UKGgGaAloD0MIBwd7E8MAbkCUhpRSlGgVS+xoFkdAm0fIgaFVUHV9lChoBmgJaA9DCG+Cb5o+r3FAlIaUUpRoFUvraBZHQJtIeXOW0JF1fZQoaAZoCWgPQwjPukbLwbRxQJSGlFKUaBVL2GgWR0CbSOERJ2+xdX2UKGgGaAloD0MIWDfeHZmAcECUhpRSlGgVS9loFkdAm0lrj1f3OHV9lChoBmgJaA9DCKiPwB9+eHFAlIaUUpRoFU0AAWgWR0CbSXK5TZQIdX2UKGgGaAloD0MIHqM88/Kdc0CUhpRSlGgVS+xoFkdAm0nDtkWhy3V9lChoBmgJaA9DCKSIDKu4LXNAlIaUUpRoFUv6aBZHQJtJxzCDVYp1fZQoaAZoCWgPQwieYP91LtRwQJSGlFKUaBVL92gWR0CbSgi+L3sYdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 372,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:362cff79b5e7b14c43f5d15df793f57beb2e1722e8922355e7cba3fb6da7941a
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4fabd0928e9be6607ae5677afe1befc59f10f71c7ce3965c0c247421bdd7cc1
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 286.12701697591694, "std_reward": 15.539335105458123, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T16:35:47.255808"}
|