from typing import Dict, List, Tuple, Union, Optional, Any from transformers.configuration_utils import PretrainedConfig class Sophie0Config(PretrainedConfig): model_type = 'transformer' keys_to_ignore_at_inference = ['past_key_values'] def __init__( self, hidden_size: int = 1024, num_hidden_layers: int = 28, num_heads: int = 16, num_kv_heads: int = 8, window_size: Optional[int] = None, rope_base: Optional[int] = int(1e6), intermediate_size: Optional[int] = 4096, hidden_act: str = "swish", eps: float = 1e-5, use_cache: bool = True, pad_token_id: int = 3, bos_token_id: int = 0, eos_token_id: int = 1, prompt_token_id: int = 8, user_token_id: int = 9, bot_token_id: int = 10, tie_word_embeddings: bool = True, vocab_size: int = 65536, dropout: float = 0.0, right_shift: bool = False, **kwargs, ): self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.window_size = window_size self.rope_base = rope_base self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.eps = eps self.use_cache = use_cache self.vocab_size = vocab_size self.dropout = dropout self.right_shift = right_shift self.prompt_token_id = prompt_token_id self.user_token_id = user_token_id self.bot_token_id = bot_token_id super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )