--- library_name: transformers license: apache-2.0 base_model: timm/efficientvit_b1.r224_in1k tags: - generated_from_trainer metrics: - accuracy model-index: - name: efficientvit_b1.r224_in1k_rice-leaf-disease-augmented-v4_v5_fft results: [] --- # efficientvit_b1.r224_in1k_rice-leaf-disease-augmented-v4_v5_fft This model is a fine-tuned version of [timm/efficientvit_b1.r224_in1k](https://huggingface.co/timm/efficientvit_b1.r224_in1k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2422 - Accuracy: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 256 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1301 | 0.5 | 64 | 2.0282 | 0.1711 | | 2.0177 | 1.0 | 128 | 1.8643 | 0.3121 | | 1.7993 | 1.5 | 192 | 1.6252 | 0.4765 | | 1.5315 | 2.0 | 256 | 1.3194 | 0.5940 | | 1.1986 | 2.5 | 320 | 1.0574 | 0.6611 | | 0.9772 | 3.0 | 384 | 0.8973 | 0.7349 | | 0.7861 | 3.5 | 448 | 0.7841 | 0.7685 | | 0.6808 | 4.0 | 512 | 0.6916 | 0.7886 | | 0.5661 | 4.5 | 576 | 0.6288 | 0.8289 | | 0.5042 | 5.0 | 640 | 0.5646 | 0.8456 | | 0.4319 | 5.5 | 704 | 0.5420 | 0.8423 | | 0.4057 | 6.0 | 768 | 0.5023 | 0.8591 | | 0.3552 | 6.5 | 832 | 0.4788 | 0.8490 | | 0.3201 | 7.0 | 896 | 0.4474 | 0.8591 | | 0.3034 | 7.5 | 960 | 0.4353 | 0.8591 | | 0.2745 | 8.0 | 1024 | 0.4315 | 0.8658 | | 0.2588 | 8.5 | 1088 | 0.4181 | 0.8624 | | 0.2601 | 9.0 | 1152 | 0.4154 | 0.8591 | | 0.2374 | 9.5 | 1216 | 0.4123 | 0.8591 | | 0.2464 | 10.0 | 1280 | 0.4054 | 0.8725 | | 0.237 | 10.5 | 1344 | 0.4071 | 0.8591 | | 0.2334 | 11.0 | 1408 | 0.3991 | 0.8658 | | 0.236 | 11.5 | 1472 | 0.3978 | 0.8792 | | 0.2267 | 12.0 | 1536 | 0.3735 | 0.8826 | | 0.1949 | 12.5 | 1600 | 0.3543 | 0.8758 | | 0.1715 | 13.0 | 1664 | 0.3416 | 0.8859 | | 0.1381 | 13.5 | 1728 | 0.3150 | 0.8926 | | 0.1274 | 14.0 | 1792 | 0.2979 | 0.8926 | | 0.1026 | 14.5 | 1856 | 0.3080 | 0.8960 | | 0.0888 | 15.0 | 1920 | 0.2842 | 0.8993 | | 0.0722 | 15.5 | 1984 | 0.2812 | 0.9027 | | 0.0723 | 16.0 | 2048 | 0.2804 | 0.8960 | | 0.0615 | 16.5 | 2112 | 0.2734 | 0.9094 | | 0.053 | 17.0 | 2176 | 0.2662 | 0.8993 | | 0.0481 | 17.5 | 2240 | 0.2615 | 0.9060 | | 0.0472 | 18.0 | 2304 | 0.2646 | 0.9027 | | 0.0425 | 18.5 | 2368 | 0.2603 | 0.9060 | | 0.041 | 19.0 | 2432 | 0.2545 | 0.9060 | | 0.0379 | 19.5 | 2496 | 0.2536 | 0.9027 | | 0.0427 | 20.0 | 2560 | 0.2567 | 0.9060 | | 0.0403 | 20.5 | 2624 | 0.2510 | 0.9094 | | 0.0374 | 21.0 | 2688 | 0.2571 | 0.9027 | | 0.039 | 21.5 | 2752 | 0.2548 | 0.9027 | | 0.0332 | 22.0 | 2816 | 0.2584 | 0.9027 | | 0.0236 | 22.5 | 2880 | 0.2474 | 0.9161 | | 0.0225 | 23.0 | 2944 | 0.2417 | 0.9161 | | 0.016 | 23.5 | 3008 | 0.2442 | 0.9128 | | 0.0135 | 24.0 | 3072 | 0.2411 | 0.9128 | | 0.0112 | 24.5 | 3136 | 0.2378 | 0.9060 | | 0.01 | 25.0 | 3200 | 0.2369 | 0.9161 | | 0.008 | 25.5 | 3264 | 0.2391 | 0.9161 | | 0.0069 | 26.0 | 3328 | 0.2333 | 0.9228 | | 0.0062 | 26.5 | 3392 | 0.2339 | 0.9195 | | 0.0065 | 27.0 | 3456 | 0.2366 | 0.9094 | | 0.0056 | 27.5 | 3520 | 0.2390 | 0.9195 | | 0.0057 | 28.0 | 3584 | 0.2387 | 0.9161 | | 0.005 | 28.5 | 3648 | 0.2417 | 0.9128 | | 0.005 | 29.0 | 3712 | 0.2420 | 0.9128 | | 0.0056 | 29.5 | 3776 | 0.2457 | 0.9161 | | 0.005 | 30.0 | 3840 | 0.2392 | 0.9195 | | 0.0052 | 30.5 | 3904 | 0.2323 | 0.9161 | | 0.0048 | 31.0 | 3968 | 0.2432 | 0.9195 | | 0.0042 | 31.5 | 4032 | 0.2426 | 0.9161 | | 0.0037 | 32.0 | 4096 | 0.2395 | 0.9195 | | 0.0028 | 32.5 | 4160 | 0.2380 | 0.9228 | | 0.0028 | 33.0 | 4224 | 0.2485 | 0.9195 | | 0.0025 | 33.5 | 4288 | 0.2410 | 0.9262 | | 0.0021 | 34.0 | 4352 | 0.2392 | 0.9228 | | 0.0017 | 34.5 | 4416 | 0.2463 | 0.9228 | | 0.0017 | 35.0 | 4480 | 0.2443 | 0.9161 | | 0.0016 | 35.5 | 4544 | 0.2463 | 0.9262 | | 0.0016 | 36.0 | 4608 | 0.2478 | 0.9161 | | 0.0015 | 36.5 | 4672 | 0.2484 | 0.9195 | | 0.0013 | 37.0 | 4736 | 0.2486 | 0.9228 | | 0.0013 | 37.5 | 4800 | 0.2449 | 0.9161 | | 0.0014 | 38.0 | 4864 | 0.2479 | 0.9228 | | 0.0013 | 38.5 | 4928 | 0.2553 | 0.9161 | | 0.0012 | 39.0 | 4992 | 0.2456 | 0.9228 | | 0.0013 | 39.5 | 5056 | 0.2507 | 0.9161 | | 0.0013 | 40.0 | 5120 | 0.2422 | 0.9262 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.1