spacemanidol commited on
Commit
236cea8
1 Parent(s): 55416e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -2972,7 +2972,7 @@ Query: Where can I get the best tacos?
2972
  ### Using Huggingface transformers
2973
 
2974
 
2975
- You can use the transformers package to use an snowflake-arctic-embed model, as shown below. For optimal retrieval quality, use the CLS token to embed each text portion and use the query prefix below (just on the query).
2976
 
2977
 
2978
 
@@ -2995,14 +2995,14 @@ document_tokens = tokenizer(documents, padding=True, truncation=True, return_te
2995
  # Compute token embeddings
2996
  with torch.no_grad():
2997
  query_embeddings = model(**query_tokens)[0][:, 0]
2998
- doument_embeddings = model(**document_tokens)[0][:, 0]
2999
 
3000
 
3001
  # normalize embeddings
3002
  query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
3003
- doument_embeddings = torch.nn.functional.normalize(doument_embeddings, p=2, dim=1)
3004
 
3005
- scores = torch.mm(query_embeddings, doument_embeddings.transpose(0, 1))
3006
  for query, query_scores in zip(queries, scores):
3007
  doc_score_pairs = list(zip(documents, query_scores))
3008
  doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
 
2972
  ### Using Huggingface transformers
2973
 
2974
 
2975
+ You can use the transformers package for a snowflake-arctic-embed model, as shown below. For optimal retrieval quality, use the CLS token to embed each text portion and use the query prefix below (just on the query).
2976
 
2977
 
2978
 
 
2995
  # Compute token embeddings
2996
  with torch.no_grad():
2997
  query_embeddings = model(**query_tokens)[0][:, 0]
2998
+ document_embeddings = model(**document_tokens)[0][:, 0]
2999
 
3000
 
3001
  # normalize embeddings
3002
  query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
3003
+ document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)
3004
 
3005
+ scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
3006
  for query, query_scores in zip(queries, scores):
3007
  doc_score_pairs = list(zip(documents, query_scores))
3008
  doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)