Smone55 commited on
Commit
a685a7d
·
1 Parent(s): c5d95a5

my first commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -187.71 +/- 114.94
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 266.62 +/- 19.91
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3752be0ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3752be0f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3752be4040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3752be40d0>", "_build": "<function ActorCriticPolicy._build at 0x7f3752be4160>", "forward": "<function ActorCriticPolicy.forward at 0x7f3752be41f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3752be4280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3752be4310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3752be43a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3752be4430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3752be44c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3752be4550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3752be1dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681144655512188896, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqwmj26WLM/ZGFBP4cc/71jJE29kE7ZvQAAAAAAAAAAQJo8vlnZID5zyRG/jVS2v7eGeT8XXaw+AAAAAAAAAAAilwy/fu58PzDIXb+mtma/g961PriRc7wAAAAAAAAAAKaSOb619hk/CogfvzdHi7/Ds3o/1u/QPgAAAAAAAAAA+sQCPiKThz9rDPg+2y9Kv4y02r1iN8q7AAAAAAAAAACzWG2+UtyPPmiyFr8iXpi/jg5DP5ZKIj8AAAAAAAAAAICxvb1LTko/Vt2GvqR4iL/lIMy8sQJMPgAAAAAAAAAATcgFPYIJZz9D0F48v/Fuv5+0C74r10C+AAAAAAAAAABmxMi9nVegP1qd8L57Fuq+h6/xPQ/QOD4AAAAAAAAAAGZTDT2sobY/aggRP/9NUD2Fwv28giVDvQAAAAAAAAAAABjfPdR9vT8pqgY/id3yvFce57064cO9AAAAAAAAAACa18y9EJqwP0pWDb9M24y+XtqEPdb4yzsAAAAAAAAAADDvCr8HI6g+Wq+bv4tMlr+AyEY/XaaiPgAAAAAAAAAAJXHgvvYtlj92a2e/xYMBvyDK4T5AYww+AAAAAAAAAACdD5A+IneVP26q3z55cC+/Pixtvbidhr0AAAAAAAAAAKq/jr7Fbb4/rYQUv+xv1760yrw+igyYPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvma5bPS+bcCUhpRSlIwBbJRLZIwBdJRHQEjy+UQkHD91fZQoaAZoCWgPQwiOdXEbDSZdwJSGlFKUaBVLPGgWR0BI9iUornTzdX2UKGgGaAloD0MIC3xFt15macCUhpRSlGgVS0RoFkdASPgr+YMOPXV9lChoBmgJaA9DCBLYnINnZ2TAlIaUUpRoFUtiaBZHQEj66ltTDO11fZQoaAZoCWgPQwg/NV66STdYwJSGlFKUaBVLRGgWR0BJBd5IH1OCdX2UKGgGaAloD0MIT62+uqokYsCUhpRSlGgVS2NoFkdASQb/p+tr9HV9lChoBmgJaA9DCB77WSyFA3HAlIaUUpRoFUtaaBZHQEkIcbzbvgF1fZQoaAZoCWgPQwjqeMxAZRVZwJSGlFKUaBVLS2gWR0BJDrzPKMefdX2UKGgGaAloD0MIjpQtknZuU8CUhpRSlGgVS0doFkdASQ/yVfNRnHV9lChoBmgJaA9DCFd3LLZJ9GDAlIaUUpRoFUteaBZHQEkYUSIxgzB1fZQoaAZoCWgPQwh15bM8DwlfwJSGlFKUaBVLUmgWR0BJGNZV4oqkdX2UKGgGaAloD0MIr9FyoIf2VsCUhpRSlGgVS0FoFkdASRobCJoCdXV9lChoBmgJaA9DCIFc4sgD813AlIaUUpRoFUtlaBZHQEkaJl8PWhB1fZQoaAZoCWgPQwjsoBLXMWZewJSGlFKUaBVLaGgWR0BJHJzDGcWkdX2UKGgGaAloD0MIySJNvIP+YcCUhpRSlGgVS3toFkdASR6wjdHlO3V9lChoBmgJaA9DCCY0SSypgWLAlIaUUpRoFUteaBZHQEkguEmICU51fZQoaAZoCWgPQwjY17rUSNV4wJSGlFKUaBVLdmgWR0BJIqSowVTKdX2UKGgGaAloD0MIZqIIqZvhd8CUhpRSlGgVS11oFkdASSNzGPxQSHV9lChoBmgJaA9DCDsYsU8ALW7AlIaUUpRoFUtqaBZHQEkmA4n4O+Z1fZQoaAZoCWgPQwicpPljWmZbwJSGlFKUaBVLRGgWR0BJJ1K5CngpdX2UKGgGaAloD0MIStOgaB55W8CUhpRSlGgVS1VoFkdASS3qTr3TNXV9lChoBmgJaA9DCL/09uci42bAlIaUUpRoFUtDaBZHQEkvYSQHRkV1fZQoaAZoCWgPQwik42pkV9NawJSGlFKUaBVLVmgWR0BJMOU+s5n2dX2UKGgGaAloD0MITl/P16zQbMCUhpRSlGgVS31oFkdASTPIU8FINHV9lChoBmgJaA9DCDVG66hqrWjAlIaUUpRoFUtAaBZHQEk2mjTKDCh1fZQoaAZoCWgPQwiTUtDtpdZiwJSGlFKUaBVLRWgWR0BJOgAyVObidX2UKGgGaAloD0MIFLNeDOWlX8CUhpRSlGgVS0RoFkdASTub7TDwY3V9lChoBmgJaA9DCO2DLAsmXV/AlIaUUpRoFUtKaBZHQEk8QEpy6tl1fZQoaAZoCWgPQwjrO78oQeZWwJSGlFKUaBVLUWgWR0BJPkNOM2m6dX2UKGgGaAloD0MIz0iERnAEcMCUhpRSlGgVS09oFkdASUUlE7W/anV9lChoBmgJaA9DCDgwuVFkHVbAlIaUUpRoFUtIaBZHQElE7tAs0551fZQoaAZoCWgPQwj2e2KdKtNXwJSGlFKUaBVLQWgWR0BJRa1TisGQdX2UKGgGaAloD0MIOUVHcvkhd8CUhpRSlGgVS1toFkdASU0FfReC1HV9lChoBmgJaA9DCNy93CfHpHXAlIaUUpRoFUuDaBZHQElMfLcKw6h1fZQoaAZoCWgPQwjj4NIx58hYwJSGlFKUaBVLZWgWR0BJTfWcz67/dX2UKGgGaAloD0MIfA+XHHfUc8CUhpRSlGgVS1doFkdASU8yULUkOnV9lChoBmgJaA9DCGDpfHiWlFPAlIaUUpRoFUtAaBZHQElTBP9DQZ51fZQoaAZoCWgPQwjgnXx6bElTwJSGlFKUaBVLWWgWR0BJWKB3A2ycdX2UKGgGaAloD0MIHLRXHw+ibMCUhpRSlGgVS2BoFkdASV2gHu7YkHV9lChoBmgJaA9DCKD5nLtduGzAlIaUUpRoFUtMaBZHQElfVPN3W4F1fZQoaAZoCWgPQwitbvWcdDV7wJSGlFKUaBVLYGgWR0BJX1awD/2kdX2UKGgGaAloD0MIXi7iO3FfccCUhpRSlGgVS2JoFkdASWYjW07bL3V9lChoBmgJaA9DCHUF24gnx1jAlIaUUpRoFUs6aBZHQElrHXmNiph1fZQoaAZoCWgPQwjw37w4cYZzwJSGlFKUaBVLbmgWR0BJcMC9ytFKdX2UKGgGaAloD0MI8N5RY8Kfc8CUhpRSlGgVS19oFkdASXMM7U5MlHV9lChoBmgJaA9DCDIFa5xNL1XAlIaUUpRoFUtTaBZHQEl1Z7ojfN11fZQoaAZoCWgPQwiuDKoNzgNuwJSGlFKUaBVLdWgWR0BJdPBSDRMOdX2UKGgGaAloD0MIqrhxi/mpd8CUhpRSlGgVS15oFkdASXpMtbs4UHV9lChoBmgJaA9DCImbU8lACnLAlIaUUpRoFUtUaBZHQEl7boKUmlZ1fZQoaAZoCWgPQwgnMQisHAhYwJSGlFKUaBVLXGgWR0BJeypaRp1zdX2UKGgGaAloD0MInKiluRXOd8CUhpRSlGgVS4NoFkdASX47/4qPO3V9lChoBmgJaA9DCHbgnBGlAGHAlIaUUpRoFUt2aBZHQEl/DIikftB1fZQoaAZoCWgPQwgcXDrmPDVVwJSGlFKUaBVLR2gWR0BJgCMPz4DcdX2UKGgGaAloD0MI4j/dQEGlc8CUhpRSlGgVS3poFkdASYEsrd30PHV9lChoBmgJaA9DCL6fGi/deVjAlIaUUpRoFUtNaBZHQEmEPpY9xId1fZQoaAZoCWgPQwhhxhSscfNjwJSGlFKUaBVLTGgWR0BJg86mwaBJdX2UKGgGaAloD0MIDB6mfXMoZMCUhpRSlGgVS2xoFkdASYxFiKBNEnV9lChoBmgJaA9DCI4Dr5Y7kVXAlIaUUpRoFUtIaBZHQEmU2WIGhVV1fZQoaAZoCWgPQwhIb7iP3FdlwJSGlFKUaBVLUGgWR0BJlqMefZmJdX2UKGgGaAloD0MIQdgpVo13Y8CUhpRSlGgVS2loFkdASZeiDdxhlXV9lChoBmgJaA9DCK/S3XU2fWbAlIaUUpRoFUtSaBZHQEmbKifxtpF1fZQoaAZoCWgPQwg34V6ZN2ViwJSGlFKUaBVLc2gWR0BJoX4bjtG/dX2UKGgGaAloD0MIP/7Soj6yYcCUhpRSlGgVS0doFkdASaUxIre67XV9lChoBmgJaA9DCBlZMsfyHmHAlIaUUpRoFUtUaBZHQEmlE6T4cm11fZQoaAZoCWgPQwh6NxYUxo5ywJSGlFKUaBVLYGgWR0BJp0Rvm5lOdX2UKGgGaAloD0MIhEvHnGd8WMCUhpRSlGgVS2NoFkdASajtiQT24HV9lChoBmgJaA9DCP8FggCZZmvAlIaUUpRoFUtaaBZHQEmq78Nx2jh1fZQoaAZoCWgPQwjL9baZCv58wJSGlFKUaBVLcGgWR0BJr1fmcOLBdX2UKGgGaAloD0MILZj4oyhXYcCUhpRSlGgVS2BoFkdASbCTB68g6nV9lChoBmgJaA9DCBpTsMaZ33nAlIaUUpRoFUtsaBZHQEmxRjSXt0F1fZQoaAZoCWgPQwhA+bt3VFBowJSGlFKUaBVLgmgWR0BJstHhCMP0dX2UKGgGaAloD0MIL/g0Jy83UcCUhpRSlGgVSztoFkdASbdqxkd3jnV9lChoBmgJaA9DCC3Q7pBiuCRAlIaUUpRoFUuEaBZHQEm+GdI5HVh1fZQoaAZoCWgPQwga3xeXqvtYwJSGlFKUaBVLPmgWR0BJv1II4VASdX2UKGgGaAloD0MIucZnsv8HaMCUhpRSlGgVS2JoFkdAScWPikwevXV9lChoBmgJaA9DCGnIeJRKR3HAlIaUUpRoFUtfaBZHQEnFNucc2it1fZQoaAZoCWgPQwhRZoNMMhRXwJSGlFKUaBVLPGgWR0BJxeXAuZkTdX2UKGgGaAloD0MI+u/BaxcFb8CUhpRSlGgVS0hoFkdAScfYFqzqr3V9lChoBmgJaA9DCORIZ2Dk21PAlIaUUpRoFUtpaBZHQEnHPk7wKBx1fZQoaAZoCWgPQwhV+DO8Ge1xwJSGlFKUaBVLhWgWR0BJy0SAYpDvdX2UKGgGaAloD0MIMiB7vfuhbMCUhpRSlGgVS1BoFkdASc1KVY6nznV9lChoBmgJaA9DCKD+s+bHDVzAlIaUUpRoFUtTaBZHQEnXY5DJEIB1fZQoaAZoCWgPQwh4tdyZCYhmwJSGlFKUaBVLbWgWR0BJ2Dxsl9jPdX2UKGgGaAloD0MIuCHGa57udsCUhpRSlGgVS3BoFkdASd/QhOgxrXV9lChoBmgJaA9DCBnnb0IhqVDAlIaUUpRoFUtjaBZHQEnhjlPrOZ91fZQoaAZoCWgPQwi8ehUZnaVpwJSGlFKUaBVLa2gWR0BJ4l0YCQtBdX2UKGgGaAloD0MIYrzmVR3ZaMCUhpRSlGgVS2xoFkdASeSur6tT1nV9lChoBmgJaA9DCOgTeZJ0iWfAlIaUUpRoFUtCaBZHQEnkXWOIZZV1fZQoaAZoCWgPQwg0gLdAgoFZwJSGlFKUaBVLQGgWR0BJ5h0p3HJcdX2UKGgGaAloD0MI9zk+WpzsW8CUhpRSlGgVS1RoFkdASecY/FBIF3V9lChoBmgJaA9DCGsotRfRTFjAlIaUUpRoFUtWaBZHQEnm67NB4Ux1fZQoaAZoCWgPQwhWDi2ynbxWwJSGlFKUaBVLTGgWR0BJ6qyfL9uQdX2UKGgGaAloD0MIiQtAo3QZLsCUhpRSlGgVS3RoFkdASe4ood+5OXV9lChoBmgJaA9DCK6cvTOaVnXAlIaUUpRoFUtkaBZHQEn0SgXdj5N1fZQoaAZoCWgPQwgiADj27Gl0wJSGlFKUaBVLZGgWR0BJ+ip3os7NdX2UKGgGaAloD0MI5xcl6O9+c8CUhpRSlGgVS2RoFkdASfyaTfR/mXV9lChoBmgJaA9DCEWEfxE0RlnAlIaUUpRoFUtNaBZHQEn8osqaw2V1fZQoaAZoCWgPQwha9bnaiiZQwJSGlFKUaBVLeGgWR0BJ/uLiuMdcdX2UKGgGaAloD0MIluoCXmY0UMCUhpRSlGgVS0ZoFkdASgMzO5avBHV9lChoBmgJaA9DCJm7lpAPc1jAlIaUUpRoFUtMaBZHQEoEW2PT5O91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3752be0ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3752be0f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3752be4040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3752be40d0>", "_build": "<function ActorCriticPolicy._build at 0x7f3752be4160>", "forward": "<function ActorCriticPolicy.forward at 0x7f3752be41f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3752be4280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3752be4310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3752be43a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3752be4430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3752be44c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3752be4550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3752be1dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681144903847022909, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3epT46yIA/djCUPrrIzr64GcQ+JdlTPQAAAAAAAAAAZpDVPPbkS7onvzs8bjyTNuIRYToBkok1AACAPwAAgD8ARu+8w7keuuLqjrp3M12zMcrKuhBLpTkAAIA/AACAP2batb2od4o+kK6tPUONm767tgI8LrdMPQAAAAAAAAAAmgjKPOEMqLqLXHo7Ey7tNWrXW7o6XtQ0AACAPwAAgD8AlwI9XMt2urNSrDb3X8Ex8E+GOsECyrUAAIA/AACAPy2enb4r/hs/FJkJPjLPlL40COW9VV5ovQAAAAAAAAAAswgkveH+jroZBz66CcFEtQd2NjvGj1w5AACAPwAAgD/mNwG97F+ruxgj7jzLjK081tUOPeTikr0AAIA/AACAP2baTr00KNU9YiYGPnFhTb7uiVw9BMEpvQAAAAAAAAAAZog0PMPdQro64BU5HqKAM3l8KbuZoi+4AACAPwAAgD8AgES8w6VNus3cSLnXdbK0OJn4Ohp+ZTgAAIA/AACAP00wRT1guvA+9u4xvgTXqL6xgBi9e6xtvQAAAAAAAAAAwL2QPVzvc7rqM9u6zkJJtqI+azt22/05AACAPwAAgD8AbQQ9rhKCP8ySBz0CJLy+FwzFPbS0xDwAAAAAAAAAAJrndjxpjLk/4r2BPnvjYT5Jcmy8tsNAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpRDIJY5dZECUhpRSlIwBbJRN6AOMAXSUR0CWZs9wFTvRdX2UKGgGaAloD0MIozodyHrTZECUhpRSlGgVTegDaBZHQJZveYzBRAN1fZQoaAZoCWgPQwg74/vi0kRjQJSGlFKUaBVN6ANoFkdAlm+mR3eN1nV9lChoBmgJaA9DCBvYKsFirWNAlIaUUpRoFU3oA2gWR0CWcW0G/vfCdX2UKGgGaAloD0MIZB9kWTDCYUCUhpRSlGgVTegDaBZHQJZzfjCHh0h1fZQoaAZoCWgPQwj/69y0GclHQJSGlFKUaBVL5mgWR0CWc+gDA8B/dX2UKGgGaAloD0MIo+iBj0EmYECUhpRSlGgVTegDaBZHQJZ3DRqoIfN1fZQoaAZoCWgPQwieRe9UQCdhQJSGlFKUaBVN6ANoFkdAlnfvcJtzjnV9lChoBmgJaA9DCEyMZfqlhmRAlIaUUpRoFU3oA2gWR0CWj5vxH5JsdX2UKGgGaAloD0MI3QcgtYn5Y0CUhpRSlGgVTegDaBZHQJaTFZntfHB1fZQoaAZoCWgPQwiDNGPR9GNlQJSGlFKUaBVN6ANoFkdAlpceT7l7t3V9lChoBmgJaA9DCNeFH5xPwGVAlIaUUpRoFU3oA2gWR0CWmqOsT37DdX2UKGgGaAloD0MI4fHtXQP7Z0CUhpRSlGgVTegDaBZHQJabJDPWxyJ1fZQoaAZoCWgPQwiasz7lGAZhQJSGlFKUaBVN6ANoFkdAlqIA2dd3S3V9lChoBmgJaA9DCMpOP6iLqmFAlIaUUpRoFU3oA2gWR0CWpuj94u9OdX2UKGgGaAloD0MI2gBsQISEQkCUhpRSlGgVTQ0BaBZHQJasUvtdAxB1fZQoaAZoCWgPQwiorKbrCVlhQJSGlFKUaBVN6ANoFkdAlrHdke6qbXV9lChoBmgJaA9DCFSobi7+3mJAlIaUUpRoFU3oA2gWR0CWtGt4iX6ZdX2UKGgGaAloD0MIavrsgGvTYECUhpRSlGgVTegDaBZHQJa8klhPTG51fZQoaAZoCWgPQwgnaf6YVnRlQJSGlFKUaBVN6ANoFkdAlry/114gR3V9lChoBmgJaA9DCAA2IELcVGFAlIaUUpRoFU3oA2gWR0CWvoexfOUudX2UKGgGaAloD0MIIVuWr0vxYECUhpRSlGgVTegDaBZHQJbAniuMdcV1fZQoaAZoCWgPQwh5BaIn5eJhQJSGlFKUaBVN6ANoFkdAlsEEnogV5HV9lChoBmgJaA9DCHswKT4+819AlIaUUpRoFU3oA2gWR0CWxDdDpkf+dX2UKGgGaAloD0MIJSAm4cLEZkCUhpRSlGgVTegDaBZHQJbFEdxQzk91fZQoaAZoCWgPQwi0WmCPiZpHQJSGlFKUaBVL12gWR0CW37lpoK2KdX2UKGgGaAloD0MIDmWoiinCYkCUhpRSlGgVTegDaBZHQJbiWdsi0OV1fZQoaAZoCWgPQwgL7ZxmAUVjQJSGlFKUaBVN6ANoFkdAluVL8m8dxXV9lChoBmgJaA9DCK97KxKTRWRAlIaUUpRoFU3oA2gWR0CW6AGlANXpdX2UKGgGaAloD0MIDcUdb/KfZkCUhpRSlGgVTegDaBZHQJbqk5n13+x1fZQoaAZoCWgPQwhDOGbZE0xhQJSGlFKUaBVN6ANoFkdAlu7pOSGJvnV9lChoBmgJaA9DCGQfZFkwM2RAlIaUUpRoFU3oA2gWR0CW8uSDAaegdX2UKGgGaAloD0MInx1wXbFSZUCUhpRSlGgVTegDaBZHQJb39Kg7HQ11fZQoaAZoCWgPQwgeN/xuuiFOQJSGlFKUaBVNDgFoFkdAlvhUxubZvnV9lChoBmgJaA9DCKnBNAwf9TNAlIaUUpRoFUvqaBZHQJb7K7EpAlh1fZQoaAZoCWgPQwgbnIh+7dVkQJSGlFKUaBVN6ANoFkdAlv0xnrY5DXV9lChoBmgJaA9DCE7VPbK5xkVAlIaUUpRoFUvSaBZHQJb9+WVu76J1fZQoaAZoCWgPQwjXv+szZ4VnQJSGlFKUaBVN6ANoFkdAlv9jY/Vy3nV9lChoBmgJaA9DCHeGqS11VD5AlIaUUpRoFUu+aBZHQJcB+v9tMwl1fZQoaAZoCWgPQwgn+RG/YhBjQJSGlFKUaBVN6ANoFkdAlwbYEfT1CnV9lChoBmgJaA9DCPqcu10vvmVAlIaUUpRoFU3oA2gWR0CXBxmFJxvOdX2UKGgGaAloD0MIi4hi8gbzUkCUhpRSlGgVS/NoFkdAlwuZIMBp6HV9lChoBmgJaA9DCIP8bOQ6YmdAlIaUUpRoFU3oA2gWR0CXDMJswco6dX2UKGgGaAloD0MIRP0ubM3kX0CUhpRSlGgVTegDaBZHQJcNV94NZvF1fZQoaAZoCWgPQwhjRnh7EFZPQJSGlFKUaBVL/mgWR0CXDY2bXpW4dX2UKGgGaAloD0MIbApkdpblZ0CUhpRSlGgVTegDaBZHQJcR+2BreqJ1fZQoaAZoCWgPQwi8ytqm+PllQJSGlFKUaBVN6ANoFkdAlxNLlijL0XV9lChoBmgJaA9DCMS12sNeyV9AlIaUUpRoFU3oA2gWR0CXKsnjABT5dX2UKGgGaAloD0MIJxHhX4SFYUCUhpRSlGgVTegDaBZHQJctK5uqFRJ1fZQoaAZoCWgPQwgErcCQ1dBlQJSGlFKUaBVN6ANoFkdAly/urIYFaHV9lChoBmgJaA9DCAAce/ZclWVAlIaUUpRoFU3oA2gWR0CXMnFxXGOudX2UKGgGaAloD0MI+KdUibJJY0CUhpRSlGgVTegDaBZHQJdIK96C17Z1fZQoaAZoCWgPQwiZLO4/Mk5hQJSGlFKUaBVN6ANoFkdAl00rlmvnsHV9lChoBmgJaA9DCHdM3ZVdbWJAlIaUUpRoFU3oA2gWR0CXVKVAiV0LdX2UKGgGaAloD0MI0lPkEPELYkCUhpRSlGgVTegDaBZHQJdX4h+vyLB1fZQoaAZoCWgPQwjWVYFaDDhdQJSGlFKUaBVN6ANoFkdAl11WZAprlHV9lChoBmgJaA9DCKIKf4a3g2ZAlIaUUpRoFU3oA2gWR0CXXYXPZ7HAdX2UKGgGaAloD0MIPlqcMUwkYUCUhpRSlGgVTegDaBZHQJdhBjZteld1fZQoaAZoCWgPQwgmj6flB85hQJSGlFKUaBVN6ANoFkdAl2HlMM7U5XV9lChoBmgJaA9DCFqeB3fn1GBAlIaUUpRoFU3oA2gWR0CXYmBYFJQMdX2UKGgGaAloD0MIl/+QfvvnYUCUhpRSlGgVTegDaBZHQJdiizC1qnF1fZQoaAZoCWgPQwgyrU1j+0BiQJSGlFKUaBVN6ANoFkdAl2XGv4dp7HV9lChoBmgJaA9DCBRcrKjBsGZAlIaUUpRoFU3oA2gWR0CXZrJO32EkdX2UKGgGaAloD0MIVObmG9EPS0CUhpRSlGgVS95oFkdAl2mBG6PKdXV9lChoBmgJaA9DCLyt9NpsA2dAlIaUUpRoFU3oA2gWR0CXauILPUrkdX2UKGgGaAloD0MIhq3ZyktlYUCUhpRSlGgVTegDaBZHQJd/eXD3ueB1fZQoaAZoCWgPQwjkolpEFFhmQJSGlFKUaBVN6ANoFkdAl4N+dsi0OXV9lChoBmgJaA9DCPqa5bLR4UNAlIaUUpRoFUuyaBZHQJeHLsa86FN1fZQoaAZoCWgPQwjD8XwG1MplQJSGlFKUaBVN6ANoFkdAl4d/DHfdh3V9lChoBmgJaA9DCEcCDTZ1PGJAlIaUUpRoFU3oA2gWR0CXnUPH1e0HdX2UKGgGaAloD0MIfsNEgxQNY0CUhpRSlGgVTegDaBZHQJeghQbdadN1fZQoaAZoCWgPQwgWFtwP+BFkQJSGlFKUaBVN6ANoFkdAl6VhVAAyVXV9lChoBmgJaA9DCKT7OQX5EmJAlIaUUpRoFU3oA2gWR0CXqEcmjTKDdX2UKGgGaAloD0MIxYzw9iD4NkCUhpRSlGgVS+FoFkdAl6qVHz6JqXV9lChoBmgJaA9DCJYhjnXxfWJAlIaUUpRoFU3oA2gWR0CXrQkVvddndX2UKGgGaAloD0MICfmgZ7PlZ0CUhpRSlGgVTegDaBZHQJewVdonKGN1fZQoaAZoCWgPQwgS+S6lrtNjQJSGlFKUaBVN6ANoFkdAl7EZRbbDdnV9lChoBmgJaA9DCOlg/Z/Dq15AlIaUUpRoFU3oA2gWR0CXsX0+kgwHdX2UKGgGaAloD0MIxttKr82FYUCUhpRSlGgVTegDaBZHQJexn6CUX551fZQoaAZoCWgPQwgyPPaz2KdmQJSGlFKUaBVN6ANoFkdAl7RORcNYsHV9lChoBmgJaA9DCLFs5pBU5mBAlIaUUpRoFU3oA2gWR0CXtRGVAzHkdX2UKGgGaAloD0MITmN7LWjAYkCUhpRSlGgVTegDaBZHQJe5WeAd4ml1fZQoaAZoCWgPQwicpWQ5iUxoQJSGlFKUaBVN6ANoFkdAl9Hpng5zYHV9lChoBmgJaA9DCAHAsWdPZWFAlIaUUpRoFU3oA2gWR0CX1PZOSGJvdX2UKGgGaAloD0MIlUbM7PP4Z0CUhpRSlGgVTegDaBZHQJfXm4/eLvV1fZQoaAZoCWgPQwg7NgLxulheQJSGlFKUaBVN6ANoFkdAl9fQAQxvenV9lChoBmgJaA9DCOAtkKB4ymZAlIaUUpRoFU3oA2gWR0CX7ussQNCrdX2UKGgGaAloD0MIGAgCZGjwYUCUhpRSlGgVTegDaBZHQJf0++SKWLR1fZQoaAZoCWgPQwhNEHUfgBxoQJSGlFKUaBVN6ANoFkdAl/lJk9U0enV9lChoBmgJaA9DCFESEmkbsmVAlIaUUpRoFU3oA2gWR0CX/LmAskIHdX2UKGgGaAloD0MI0sd8QKAHZECUhpRSlGgVTegDaBZHQJgAUkeIVM51fZQoaAZoCWgPQwiFeY8zzeNjQJSGlFKUaBVN6ANoFkdAmAUzGPxQSHV9lChoBmgJaA9DCCbD8XyGi2FAlIaUUpRoFU3oA2gWR0CYBehIvrWzdX2UKGgGaAloD0MIhbAaS1jTY0CUhpRSlGgVTegDaBZHQJgGRyBClad1fZQoaAZoCWgPQwgvppnu9ddmQJSGlFKUaBVN6ANoFkdAmAZqa5PM0XV9lChoBmgJaA9DCCqQ2Vn0+GVAlIaUUpRoFU3oA2gWR0CYCR6be/HpdX2UKGgGaAloD0MI/82LE1+sYkCUhpRSlGgVTegDaBZHQJgJ7IT4+KV1fZQoaAZoCWgPQwjLEMe6uLdFQJSGlFKUaBVLrWgWR0CYDZn/T9bYdX2UKGgGaAloD0MIFytqMI0xZUCUhpRSlGgVTegDaBZHQJgNsvysjml1fZQoaAZoCWgPQwiILqhvmSdkQJSGlFKUaBVN6ANoFkdAmBACVv/BFnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a572183f2f436c41fe21401e95e6d7d26333b56e5150fa0fc59ddabbf5e541f7
3
+ size 147383
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3752be0ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3752be0f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3752be4040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3752be40d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3752be4160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3752be41f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3752be4280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3752be4310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3752be43a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3752be4430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3752be44c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3752be4550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f3752be1dc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1681144903847022909,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3epT46yIA/djCUPrrIzr64GcQ+JdlTPQAAAAAAAAAAZpDVPPbkS7onvzs8bjyTNuIRYToBkok1AACAPwAAgD8ARu+8w7keuuLqjrp3M12zMcrKuhBLpTkAAIA/AACAP2batb2od4o+kK6tPUONm767tgI8LrdMPQAAAAAAAAAAmgjKPOEMqLqLXHo7Ey7tNWrXW7o6XtQ0AACAPwAAgD8AlwI9XMt2urNSrDb3X8Ex8E+GOsECyrUAAIA/AACAPy2enb4r/hs/FJkJPjLPlL40COW9VV5ovQAAAAAAAAAAswgkveH+jroZBz66CcFEtQd2NjvGj1w5AACAPwAAgD/mNwG97F+ruxgj7jzLjK081tUOPeTikr0AAIA/AACAP2baTr00KNU9YiYGPnFhTb7uiVw9BMEpvQAAAAAAAAAAZog0PMPdQro64BU5HqKAM3l8KbuZoi+4AACAPwAAgD8AgES8w6VNus3cSLnXdbK0OJn4Ohp+ZTgAAIA/AACAP00wRT1guvA+9u4xvgTXqL6xgBi9e6xtvQAAAAAAAAAAwL2QPVzvc7rqM9u6zkJJtqI+azt22/05AACAPwAAgD8AbQQ9rhKCP8ySBz0CJLy+FwzFPbS0xDwAAAAAAAAAAJrndjxpjLk/4r2BPnvjYT5Jcmy8tsNAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpRDIJY5dZECUhpRSlIwBbJRN6AOMAXSUR0CWZs9wFTvRdX2UKGgGaAloD0MIozodyHrTZECUhpRSlGgVTegDaBZHQJZveYzBRAN1fZQoaAZoCWgPQwg74/vi0kRjQJSGlFKUaBVN6ANoFkdAlm+mR3eN1nV9lChoBmgJaA9DCBvYKsFirWNAlIaUUpRoFU3oA2gWR0CWcW0G/vfCdX2UKGgGaAloD0MIZB9kWTDCYUCUhpRSlGgVTegDaBZHQJZzfjCHh0h1fZQoaAZoCWgPQwj/69y0GclHQJSGlFKUaBVL5mgWR0CWc+gDA8B/dX2UKGgGaAloD0MIo+iBj0EmYECUhpRSlGgVTegDaBZHQJZ3DRqoIfN1fZQoaAZoCWgPQwieRe9UQCdhQJSGlFKUaBVN6ANoFkdAlnfvcJtzjnV9lChoBmgJaA9DCEyMZfqlhmRAlIaUUpRoFU3oA2gWR0CWj5vxH5JsdX2UKGgGaAloD0MI3QcgtYn5Y0CUhpRSlGgVTegDaBZHQJaTFZntfHB1fZQoaAZoCWgPQwiDNGPR9GNlQJSGlFKUaBVN6ANoFkdAlpceT7l7t3V9lChoBmgJaA9DCNeFH5xPwGVAlIaUUpRoFU3oA2gWR0CWmqOsT37DdX2UKGgGaAloD0MI4fHtXQP7Z0CUhpRSlGgVTegDaBZHQJabJDPWxyJ1fZQoaAZoCWgPQwiasz7lGAZhQJSGlFKUaBVN6ANoFkdAlqIA2dd3S3V9lChoBmgJaA9DCMpOP6iLqmFAlIaUUpRoFU3oA2gWR0CWpuj94u9OdX2UKGgGaAloD0MI2gBsQISEQkCUhpRSlGgVTQ0BaBZHQJasUvtdAxB1fZQoaAZoCWgPQwiorKbrCVlhQJSGlFKUaBVN6ANoFkdAlrHdke6qbXV9lChoBmgJaA9DCFSobi7+3mJAlIaUUpRoFU3oA2gWR0CWtGt4iX6ZdX2UKGgGaAloD0MIavrsgGvTYECUhpRSlGgVTegDaBZHQJa8klhPTG51fZQoaAZoCWgPQwgnaf6YVnRlQJSGlFKUaBVN6ANoFkdAlry/114gR3V9lChoBmgJaA9DCAA2IELcVGFAlIaUUpRoFU3oA2gWR0CWvoexfOUudX2UKGgGaAloD0MIIVuWr0vxYECUhpRSlGgVTegDaBZHQJbAniuMdcV1fZQoaAZoCWgPQwh5BaIn5eJhQJSGlFKUaBVN6ANoFkdAlsEEnogV5HV9lChoBmgJaA9DCHswKT4+819AlIaUUpRoFU3oA2gWR0CWxDdDpkf+dX2UKGgGaAloD0MIJSAm4cLEZkCUhpRSlGgVTegDaBZHQJbFEdxQzk91fZQoaAZoCWgPQwi0WmCPiZpHQJSGlFKUaBVL12gWR0CW37lpoK2KdX2UKGgGaAloD0MIDmWoiinCYkCUhpRSlGgVTegDaBZHQJbiWdsi0OV1fZQoaAZoCWgPQwgL7ZxmAUVjQJSGlFKUaBVN6ANoFkdAluVL8m8dxXV9lChoBmgJaA9DCK97KxKTRWRAlIaUUpRoFU3oA2gWR0CW6AGlANXpdX2UKGgGaAloD0MIDcUdb/KfZkCUhpRSlGgVTegDaBZHQJbqk5n13+x1fZQoaAZoCWgPQwhDOGbZE0xhQJSGlFKUaBVN6ANoFkdAlu7pOSGJvnV9lChoBmgJaA9DCGQfZFkwM2RAlIaUUpRoFU3oA2gWR0CW8uSDAaegdX2UKGgGaAloD0MInx1wXbFSZUCUhpRSlGgVTegDaBZHQJb39Kg7HQ11fZQoaAZoCWgPQwgeN/xuuiFOQJSGlFKUaBVNDgFoFkdAlvhUxubZvnV9lChoBmgJaA9DCKnBNAwf9TNAlIaUUpRoFUvqaBZHQJb7K7EpAlh1fZQoaAZoCWgPQwgbnIh+7dVkQJSGlFKUaBVN6ANoFkdAlv0xnrY5DXV9lChoBmgJaA9DCE7VPbK5xkVAlIaUUpRoFUvSaBZHQJb9+WVu76J1fZQoaAZoCWgPQwjXv+szZ4VnQJSGlFKUaBVN6ANoFkdAlv9jY/Vy3nV9lChoBmgJaA9DCHeGqS11VD5AlIaUUpRoFUu+aBZHQJcB+v9tMwl1fZQoaAZoCWgPQwgn+RG/YhBjQJSGlFKUaBVN6ANoFkdAlwbYEfT1CnV9lChoBmgJaA9DCPqcu10vvmVAlIaUUpRoFU3oA2gWR0CXBxmFJxvOdX2UKGgGaAloD0MIi4hi8gbzUkCUhpRSlGgVS/NoFkdAlwuZIMBp6HV9lChoBmgJaA9DCIP8bOQ6YmdAlIaUUpRoFU3oA2gWR0CXDMJswco6dX2UKGgGaAloD0MIRP0ubM3kX0CUhpRSlGgVTegDaBZHQJcNV94NZvF1fZQoaAZoCWgPQwhjRnh7EFZPQJSGlFKUaBVL/mgWR0CXDY2bXpW4dX2UKGgGaAloD0MIbApkdpblZ0CUhpRSlGgVTegDaBZHQJcR+2BreqJ1fZQoaAZoCWgPQwi8ytqm+PllQJSGlFKUaBVN6ANoFkdAlxNLlijL0XV9lChoBmgJaA9DCMS12sNeyV9AlIaUUpRoFU3oA2gWR0CXKsnjABT5dX2UKGgGaAloD0MIJxHhX4SFYUCUhpRSlGgVTegDaBZHQJctK5uqFRJ1fZQoaAZoCWgPQwgErcCQ1dBlQJSGlFKUaBVN6ANoFkdAly/urIYFaHV9lChoBmgJaA9DCAAce/ZclWVAlIaUUpRoFU3oA2gWR0CXMnFxXGOudX2UKGgGaAloD0MI+KdUibJJY0CUhpRSlGgVTegDaBZHQJdIK96C17Z1fZQoaAZoCWgPQwiZLO4/Mk5hQJSGlFKUaBVN6ANoFkdAl00rlmvnsHV9lChoBmgJaA9DCHdM3ZVdbWJAlIaUUpRoFU3oA2gWR0CXVKVAiV0LdX2UKGgGaAloD0MI0lPkEPELYkCUhpRSlGgVTegDaBZHQJdX4h+vyLB1fZQoaAZoCWgPQwjWVYFaDDhdQJSGlFKUaBVN6ANoFkdAl11WZAprlHV9lChoBmgJaA9DCKIKf4a3g2ZAlIaUUpRoFU3oA2gWR0CXXYXPZ7HAdX2UKGgGaAloD0MIPlqcMUwkYUCUhpRSlGgVTegDaBZHQJdhBjZteld1fZQoaAZoCWgPQwgmj6flB85hQJSGlFKUaBVN6ANoFkdAl2HlMM7U5XV9lChoBmgJaA9DCFqeB3fn1GBAlIaUUpRoFU3oA2gWR0CXYmBYFJQMdX2UKGgGaAloD0MIl/+QfvvnYUCUhpRSlGgVTegDaBZHQJdiizC1qnF1fZQoaAZoCWgPQwgyrU1j+0BiQJSGlFKUaBVN6ANoFkdAl2XGv4dp7HV9lChoBmgJaA9DCBRcrKjBsGZAlIaUUpRoFU3oA2gWR0CXZrJO32EkdX2UKGgGaAloD0MIVObmG9EPS0CUhpRSlGgVS95oFkdAl2mBG6PKdXV9lChoBmgJaA9DCLyt9NpsA2dAlIaUUpRoFU3oA2gWR0CXauILPUrkdX2UKGgGaAloD0MIhq3ZyktlYUCUhpRSlGgVTegDaBZHQJd/eXD3ueB1fZQoaAZoCWgPQwjkolpEFFhmQJSGlFKUaBVN6ANoFkdAl4N+dsi0OXV9lChoBmgJaA9DCPqa5bLR4UNAlIaUUpRoFUuyaBZHQJeHLsa86FN1fZQoaAZoCWgPQwjD8XwG1MplQJSGlFKUaBVN6ANoFkdAl4d/DHfdh3V9lChoBmgJaA9DCEcCDTZ1PGJAlIaUUpRoFU3oA2gWR0CXnUPH1e0HdX2UKGgGaAloD0MIfsNEgxQNY0CUhpRSlGgVTegDaBZHQJeghQbdadN1fZQoaAZoCWgPQwgWFtwP+BFkQJSGlFKUaBVN6ANoFkdAl6VhVAAyVXV9lChoBmgJaA9DCKT7OQX5EmJAlIaUUpRoFU3oA2gWR0CXqEcmjTKDdX2UKGgGaAloD0MIxYzw9iD4NkCUhpRSlGgVS+FoFkdAl6qVHz6JqXV9lChoBmgJaA9DCJYhjnXxfWJAlIaUUpRoFU3oA2gWR0CXrQkVvddndX2UKGgGaAloD0MICfmgZ7PlZ0CUhpRSlGgVTegDaBZHQJewVdonKGN1fZQoaAZoCWgPQwgS+S6lrtNjQJSGlFKUaBVN6ANoFkdAl7EZRbbDdnV9lChoBmgJaA9DCOlg/Z/Dq15AlIaUUpRoFU3oA2gWR0CXsX0+kgwHdX2UKGgGaAloD0MIxttKr82FYUCUhpRSlGgVTegDaBZHQJexn6CUX551fZQoaAZoCWgPQwgyPPaz2KdmQJSGlFKUaBVN6ANoFkdAl7RORcNYsHV9lChoBmgJaA9DCLFs5pBU5mBAlIaUUpRoFU3oA2gWR0CXtRGVAzHkdX2UKGgGaAloD0MITmN7LWjAYkCUhpRSlGgVTegDaBZHQJe5WeAd4ml1fZQoaAZoCWgPQwicpWQ5iUxoQJSGlFKUaBVN6ANoFkdAl9Hpng5zYHV9lChoBmgJaA9DCAHAsWdPZWFAlIaUUpRoFU3oA2gWR0CX1PZOSGJvdX2UKGgGaAloD0MIlUbM7PP4Z0CUhpRSlGgVTegDaBZHQJfXm4/eLvV1fZQoaAZoCWgPQwg7NgLxulheQJSGlFKUaBVN6ANoFkdAl9fQAQxvenV9lChoBmgJaA9DCOAtkKB4ymZAlIaUUpRoFU3oA2gWR0CX7ussQNCrdX2UKGgGaAloD0MIGAgCZGjwYUCUhpRSlGgVTegDaBZHQJf0++SKWLR1fZQoaAZoCWgPQwhNEHUfgBxoQJSGlFKUaBVN6ANoFkdAl/lJk9U0enV9lChoBmgJaA9DCFESEmkbsmVAlIaUUpRoFU3oA2gWR0CX/LmAskIHdX2UKGgGaAloD0MI0sd8QKAHZECUhpRSlGgVTegDaBZHQJgAUkeIVM51fZQoaAZoCWgPQwiFeY8zzeNjQJSGlFKUaBVN6ANoFkdAmAUzGPxQSHV9lChoBmgJaA9DCCbD8XyGi2FAlIaUUpRoFU3oA2gWR0CYBehIvrWzdX2UKGgGaAloD0MIhbAaS1jTY0CUhpRSlGgVTegDaBZHQJgGRyBClad1fZQoaAZoCWgPQwgvppnu9ddmQJSGlFKUaBVN6ANoFkdAmAZqa5PM0XV9lChoBmgJaA9DCCqQ2Vn0+GVAlIaUUpRoFU3oA2gWR0CYCR6be/HpdX2UKGgGaAloD0MI/82LE1+sYkCUhpRSlGgVTegDaBZHQJgJ7IT4+KV1fZQoaAZoCWgPQwjLEMe6uLdFQJSGlFKUaBVLrWgWR0CYDZn/T9bYdX2UKGgGaAloD0MIFytqMI0xZUCUhpRSlGgVTegDaBZHQJgNsvysjml1fZQoaAZoCWgPQwiILqhvmSdkQJSGlFKUaBVN6ANoFkdAmBACVv/BFnVlLg=="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 252,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:651af25940035d9e447a7dedf4598b44b4c296eccb655d73181583f72e7a083b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4598d34a66e06eefa111715e05291b99d96fbf8d0fe458aaed3b19f284a2e45
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -187.71410154011102, "std_reward": 114.93666978128948, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-10T16:39:56.886542"}
 
1
+ {"mean_reward": 266.6200023753889, "std_reward": 19.911308466652216, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-10T17:02:42.514307"}