SmartIU2 commited on
Commit
f9c88fd
·
verified ·
1 Parent(s): fb289b8

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - absa
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ widget: []
9
+ metrics:
10
+ - accuracy
11
+ pipeline_tag: text-classification
12
+ library_name: setfit
13
+ inference: false
14
+ ---
15
+
16
+ # SetFit Aspect Model
17
+
18
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
19
+
20
+ The model has been trained using an efficient few-shot learning technique that involves:
21
+
22
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
+
25
+ This model was trained within the context of a larger system for ABSA, which looks like so:
26
+
27
+ 1. Use a spaCy model to select possible aspect span candidates.
28
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
29
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
30
+
31
+ ## Model Details
32
+
33
+ ### Model Description
34
+ - **Model Type:** SetFit
35
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
36
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
37
+ - **spaCy Model:** en_core_web_trf
38
+ - **SetFitABSA Aspect Model:** [SmartIU2/setfit-imdb-absa-action-v1.0-aspect](https://huggingface.co/SmartIU2/setfit-imdb-absa-action-v1.0-aspect)
39
+ - **SetFitABSA Polarity Model:** [SmartIU2/setfit-imdb-absa-action-v1.0-polarity](https://huggingface.co/SmartIU2/setfit-imdb-absa-action-v1.0-polarity)
40
+ - **Maximum Sequence Length:** 512 tokens
41
+ - **Number of Classes:** 2 classes
42
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
43
+ <!-- - **Language:** Unknown -->
44
+ <!-- - **License:** Unknown -->
45
+
46
+ ### Model Sources
47
+
48
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
49
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
50
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
51
+
52
+ ## Uses
53
+
54
+ ### Direct Use for Inference
55
+
56
+ First install the SetFit library:
57
+
58
+ ```bash
59
+ pip install setfit
60
+ ```
61
+
62
+ Then you can load this model and run inference.
63
+
64
+ ```python
65
+ from setfit import AbsaModel
66
+
67
+ # Download from the 🤗 Hub
68
+ model = AbsaModel.from_pretrained(
69
+ "SmartIU2/setfit-imdb-absa-action-v1.0-aspect",
70
+ "SmartIU2/setfit-imdb-absa-action-v1.0-polarity",
71
+ )
72
+ # Run inference
73
+ preds = model("The food was great, but the venue is just way too busy.")
74
+ ```
75
+
76
+ <!--
77
+ ### Downstream Use
78
+
79
+ *List how someone could finetune this model on their own dataset.*
80
+ -->
81
+
82
+ <!--
83
+ ### Out-of-Scope Use
84
+
85
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
86
+ -->
87
+
88
+ <!--
89
+ ## Bias, Risks and Limitations
90
+
91
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
92
+ -->
93
+
94
+ <!--
95
+ ### Recommendations
96
+
97
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
98
+ -->
99
+
100
+ ## Training Details
101
+
102
+ ### Framework Versions
103
+ - Python: 3.10.6
104
+ - SetFit: 1.1.2
105
+ - Sentence Transformers: 4.1.0
106
+ - spaCy: 3.7.5
107
+ - Transformers: 4.52.4
108
+ - PyTorch: 2.7.0+cu128
109
+ - Datasets: 3.6.0
110
+ - Tokenizers: 0.21.1
111
+
112
+ ## Citation
113
+
114
+ ### BibTeX
115
+ ```bibtex
116
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
117
+ doi = {10.48550/ARXIV.2209.11055},
118
+ url = {https://arxiv.org/abs/2209.11055},
119
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
120
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
121
+ title = {Efficient Few-Shot Learning Without Prompts},
122
+ publisher = {arXiv},
123
+ year = {2022},
124
+ copyright = {Creative Commons Attribution 4.0 International}
125
+ }
126
+ ```
127
+
128
+ <!--
129
+ ## Glossary
130
+
131
+ *Clearly define terms in order to be accessible across audiences.*
132
+ -->
133
+
134
+ <!--
135
+ ## Model Card Authors
136
+
137
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
138
+ -->
139
+
140
+ <!--
141
+ ## Model Card Contact
142
+
143
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
144
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.52.4",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.7.0+cu128"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "en_core_web_trf",
3
+ "span_context": 0,
4
+ "normalize_embeddings": false,
5
+ "labels": [
6
+ "no aspect",
7
+ "aspect"
8
+ ]
9
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a08a3e0146e22aff5ceb3caca8e0a739600e80c4edd6ba5f4777bb6a443737b
3
+ size 328485128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eebc2a656caddd733722a816d8ebf22b7351d3a53a76a9a1a20f4644f34441df
3
+ size 6997
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 128,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff