diff --git "a/modeling_doge2.py" "b/modeling_doge2.py" --- "a/modeling_doge2.py" +++ "b/modeling_doge2.py" @@ -1,1095 +1,1095 @@ -# coding=utf-8 -# Copyright 2025 Jingze Shi and the SmallDoge team and the HuggingFace Inc. team. All rights reserved. -# -# The Doge family of small language models is trained by SmallDoge Team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import math -from typing import Callable, List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -from torch import nn - -from transformers.activations import ACT2FN -from transformers.cache_utils import Cache, DynamicCache, StaticCache -from transformers.generation import GenerationMixin -from transformers.integrations import use_kernel_forward_from_hub -from transformers.modeling_attn_mask_utils import AttentionMaskConverter -from transformers.modeling_flash_attention_utils import FlashAttentionKwargs -from transformers.modeling_layers import GradientCheckpointingLayer -from transformers.modeling_outputs import ( - BaseModelOutputWithPast, - CausalLMOutputWithPast, - MoeCausalLMOutputWithPast, - MoeModelOutputWithPast, - SequenceClassifierOutputWithPast -) -from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update -from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel -from transformers.processing_utils import Unpack -from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS -from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging -from .configuration_doge2 import Doge2Config - - -if is_torch_flex_attn_available(): - from torch.nn.attention.flex_attention import BlockMask - - from transformers.integrations.flex_attention import make_flex_block_causal_mask - - -logger = logging.get_logger(__name__) - - -@use_kernel_forward_from_hub("RMSNorm") -class Doge2RMSNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - Doge2RMSNorm is equivalent to T5LayerNorm - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - def extra_repr(self): - return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" - - -ALL_LAYERNORM_LAYERS.append(Doge2RMSNorm) - - -class DogeMLP(nn.Module): - def __init__(self, config: Doge2Config): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.intermediate_size = config.intermediate_size - - self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) - self.act_fn = ACT2FN[config.hidden_act] - - def forward(self, x): - down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) - return down_proj - - -class DogeCDMoE(nn.Module): - def __init__(self, config: Doge2Config): - super().__init__() - self.hidden_size = config.hidden_size - self.intermediate_size = config.intermediate_size - self.act_fn = ACT2FN[config.hidden_act] - - self.num_experts = config.num_experts - self.num_keys = math.floor(math.sqrt(self.num_experts)) - self.top_k = config.num_experts_per_tok - self.norm_topk_prob = config.norm_topk_prob - - # shared expert - self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) - - # router gate for retrieval experts - self.router_gate = nn.Linear(self.hidden_size, self.num_keys * 2, bias=False) - - # routed experts - self.down_embed = nn.Embedding(self.num_experts, self.hidden_size) - self.up_embed = nn.Embedding(self.num_experts, self.hidden_size) - - def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: - bsz, seq_len, _ = hidden_states.shape - - # get routing logits with router gate - router_logits = self.router_gate(hidden_states).view(2, bsz * seq_len, -1) - - # get experts with the highest routing logits - (scores_x, scores_y), (indices_x, indices_y) = router_logits.topk(self.num_keys, dim=-1) - all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) - all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2) - all_scores = all_scores.view(*all_scores.shape[:-2], -1) - all_indices = all_indices.view(*all_indices.shape[:-2], -1) - scores, position_indices = all_scores.topk(self.top_k, dim=-1) - indices = all_indices.gather(-1, position_indices) - routing_weights = F.softmax(scores, dim=-1) - if self.norm_topk_prob: - routing_weights /= routing_weights.sum(dim=-1, keepdim=True) - - # mix routed experts states with shared expert states - down_embed = self.down_embed(indices) - up_embed = self.up_embed(indices) - experts_weights = torch.matmul(down_embed, hidden_states.view(bsz * seq_len, -1, 1)).view(bsz * seq_len, -1) - experts_weights = self.act_fn(experts_weights) * routing_weights - experts_states = torch.matmul(experts_weights.view(bsz * seq_len, 1, -1), up_embed).view(bsz, seq_len, -1) - hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) - hidden_states = hidden_states + experts_states - return hidden_states, router_logits - - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., : x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): - """Applies Rotary Position Embedding to the query and key tensors. - - Args: - q (`torch.Tensor`): The query tensor. - k (`torch.Tensor`): The key tensor. - cos (`torch.Tensor`): The cosine part of the rotary embedding. - sin (`torch.Tensor`): The sine part of the rotary embedding. - position_ids (`torch.Tensor`, *optional*): - Deprecated and unused. - unsqueeze_dim (`int`, *optional*, defaults to 1): - The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and - sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note - that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and - k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes - cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have - the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. - Returns: - `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. - """ - cos = cos.unsqueeze(unsqueeze_dim) - sin = sin.unsqueeze(unsqueeze_dim) - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """ - This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, - num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) - - -def eager_attention_forward( - module: nn.Module, - query: torch.Tensor, - key: torch.Tensor, - value: torch.Tensor, - attention_mask: Optional[torch.Tensor], - scaling: float, - dropout: float = 0.0, - **kwargs, -): - key_states = repeat_kv(key, module.num_key_value_groups) - value_states = repeat_kv(value, module.num_key_value_groups) - - attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling - if attention_mask is not None: - causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] - attn_weights = attn_weights + causal_mask - - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) - attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) - attn_output = torch.matmul(attn_weights, value_states) - attn_output = attn_output.transpose(1, 2).contiguous() - - return attn_output, attn_weights - - -class Doge2Attention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper""" - - def __init__(self, config: Doge2Config, layer_idx: int): - super().__init__() - self.config = config - self.layer_idx = layer_idx - self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) - self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads - self.scaling = self.head_dim**-0.5 - self.attention_dropout = config.attention_dropout - self.keep_window_size = config.keep_window_size - - self.q_proj = nn.Linear( - config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias - ) - self.k_proj = nn.Linear( - config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias - ) - self.v_proj = nn.Linear( - config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias - ) - # # dynamic mask for the QK^T attention weights matrix - # self.A = nn.Parameter(torch.zeros(config.num_key_value_heads)) - # self.dt_proj = nn.Linear( - # config.num_key_value_heads * self.head_dim, config.num_key_value_heads, bias=config.attention_bias - # ) - # self.o_proj = nn.Linear( - # config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias - # ) - self.q_norm = Doge2RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim! - self.k_norm = Doge2RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape - - def forward( - self, - hidden_states: torch.Tensor, - position_embeddings: Tuple[torch.Tensor, torch.Tensor], - attention_mask: Optional[torch.Tensor], - past_key_value: Optional[Cache] = None, - cache_position: Optional[torch.LongTensor] = None, - **kwargs: Unpack[FlashAttentionKwargs], - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - input_shape = hidden_states.shape[:-1] - hidden_shape = (*input_shape, -1, self.head_dim) - - query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) - key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) - value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) - - cos, sin = position_embeddings - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) - - if past_key_value is not None: - # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # # calculate dynamic mask from value_states - # dt_states = self.dt_proj( - # value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1) - # ) - # dt_states = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2) - # attn_mask = self.prepare_dynamic_mask( - # hidden_states=hidden_states, - # dt_states=dt_states, - # keep_window_size=self.keep_window_size, - # attention_mask=attention_mask, - # ) - # attn_mask = repeat_kv(attn_mask, self.num_key_value_groups) - attn_mask = attention_mask - - attention_interface: Callable = eager_attention_forward - if self.config._attn_implementation != "eager": - attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] - - attn_output, attn_weights = attention_interface( - self, - query_states, - key_states, - value_states, - attention_mask=attn_mask, - dropout=0.0 if not self.training else self.attention_dropout, - scaling=self.scaling, - **kwargs, - ) - - attn_output = attn_output.reshape(*input_shape, -1).contiguous() - attn_output = self.o_proj(attn_output) - return attn_output, attn_weights - - def prepare_dynamic_mask( - self, - hidden_states: torch.Tensor, - dt_states: torch.Tensor, - keep_window_size: int = 2048, - attention_mask: Optional[torch.Tensor] = None, - ): - """ - The core idea of DMA is to calculate the dynamic attention mask to mask the tokens that should be masked, so as to form sparse attention. - - Combine `dt_states` with `attention_mask` to generate the final `attn_mask`. - - Args: - hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision. - dt_states (`torch.Tensor`): dt_states of shape `(batch_size, num_kv_heads, key_sequence_length)`. - keep_window_size (`int`): The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value. - attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`. - """ - min_dtype = torch.finfo(hidden_states.dtype).min - dtype = hidden_states.dtype - attn_mask = dt_states[:, :, None, :].expand( - -1, -1, hidden_states.shape[1], -1 - ) # [batch_size, num_kv_heads, query_len, key_len] - active_mask = torch.zeros_like(attn_mask, dtype=dtype, device=attn_mask.device) - if attention_mask is not None: - if attention_mask.dtype == torch.bool: - dtype = hidden_states.dtype - attention_mask = torch.where( - attention_mask, torch.tensor(0.0, device=attention_mask.device, dtype=dtype), min_dtype - ) - attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : attn_mask.shape[-1]] != 0, min_dtype) - if attn_mask.shape[-1] > keep_window_size: - topk_indices = torch.topk( - attn_mask, keep_window_size, dim=-1, largest=True, sorted=False - ).indices - active_mask = active_mask.scatter(-1, topk_indices, 1.0) - attn_mask = attn_mask.masked_fill(active_mask == 0.0, min_dtype) - return attn_mask - - -class Doge2DecoderLayer(GradientCheckpointingLayer): - def __init__(self, config: Doge2Config, layer_idx: int): - super().__init__() - self.hidden_dropout = config.hidden_dropout - - self.input_layernorm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.self_attn = Doge2Attention(config, layer_idx) - self.input_residual = nn.Parameter(torch.ones(config.hidden_size)) - - self.post_attention_layernorm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.mlp = DogeMLP(config) if not config.is_moe else DogeCDMoE(config) - self.post_attention_residual = nn.Parameter(torch.ones(config.hidden_size)) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - output_router_logits: Optional[bool] = False, - use_cache: Optional[bool] = False, - cache_position: Optional[torch.LongTensor] = None, - position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC - **kwargs: Unpack[FlashAttentionKwargs], - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, sequence_length)` where padding elements are indicated by 0. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - output_router_logits (`bool`, *optional*): - Whether or not to return the logits of all the routers. They are useful for computing the router loss, - and should not be returned during inference. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): - Indices depicting the position of the input sequence tokens in the sequence. - position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): - Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, - with `head_dim` being the embedding dimension of each attention head. - kwargs (`dict`, *optional*): - Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code - into the model - """ - - # sequence transformation - residual = hidden_states - hidden_states = self.input_layernorm(hidden_states) - hidden_states, self_attn_weights = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - cache_position=cache_position, - position_embeddings=position_embeddings, - **kwargs, - ) - self_attn_weights = None - hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) - hidden_states = self.input_residual * residual + hidden_states - - # state transformation - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - if isinstance(hidden_states, tuple): - hidden_states, router_logits = hidden_states - else: - router_logits = None - hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) - hidden_states = self.post_attention_residual * residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights,) - - if output_router_logits: - outputs += (router_logits,) - - return outputs - - -@auto_docstring -class Doge2PreTrainedModel(PreTrainedModel): - config_class = Doge2Config - base_model_prefix = "model" - supports_gradient_checkpointing = True - _no_split_modules = ["Doge2DecoderLayer"] - _skip_keys_device_placement = ["past_key_values"] - _supports_flash_attn_2 = False - _supports_sdpa = True - _supports_flex_attn = False - _supports_cache_class = True - _supports_quantized_cache = True - _supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) - _supports_attention_backend = True - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - elif isinstance(module, Doge2RMSNorm): - module.weight.data.fill_(1.0) - - -class Doge2RotaryEmbedding(nn.Module): - def __init__(self, config: Doge2Config, device=None): - super().__init__() - # BC: "rope_type" was originally "type" - if hasattr(config, "rope_scaling") and config.rope_scaling is not None: - self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) - else: - self.rope_type = "default" - self.max_seq_len_cached = config.max_position_embeddings - self.original_max_seq_len = config.max_position_embeddings - - self.config = config - self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] - - inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) - self.register_buffer("inv_freq", inv_freq, persistent=False) - self.original_inv_freq = self.inv_freq - - @torch.no_grad() - @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) - def forward(self, x, position_ids): - inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) - position_ids_expanded = position_ids[:, None, :].float() - - device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" - with torch.autocast(device_type=device_type, enabled=False): # Force float32 - freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) - emb = torch.cat((freqs, freqs), dim=-1) - cos = emb.cos() * self.attention_scaling - sin = emb.sin() * self.attention_scaling - - return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) - - -@auto_docstring -class Doge2Model(Doge2PreTrainedModel): - def __init__(self, config: Doge2Config): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) - self.layers = nn.ModuleList( - [Doge2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] - ) - self.norm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.rotary_emb = Doge2RotaryEmbedding(config=config) - self.gradient_checkpointing = False - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - @can_return_tuple - @auto_docstring - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Cache] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - output_router_logits: Optional[bool] = None, - cache_position: Optional[torch.LongTensor] = None, - **flash_attn_kwargs: Unpack[FlashAttentionKwargs], - ) -> MoeModelOutputWithPast: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_router_logits = ( - output_router_logits if output_router_logits is not None else self.config.output_router_logits - ) - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - - if (input_ids is None) ^ (inputs_embeds is not None): - raise ValueError("You must specify exactly one of input_ids or inputs_embeds") - - if self.gradient_checkpointing and self.training and use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." - ) - use_cache = False - - # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache - if not isinstance(past_key_values, (type(None), Cache)): - raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - - if use_cache and past_key_values is None: - past_key_values = DynamicCache() - - if cache_position is None: - past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 - cache_position = torch.arange( - past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device - ) - if position_ids is None: - position_ids = cache_position.unsqueeze(0) - - causal_mask = self._update_causal_mask( - attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions - ) - - hidden_states = inputs_embeds - - # create position embeddings to be shared across the decoder layers - position_embeddings = self.rotary_emb(hidden_states, position_ids) - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - all_router_logits = () if output_router_logits else None - - for decoder_layer in self.layers[: self.config.num_hidden_layers]: - if output_hidden_states: - all_hidden_states += (hidden_states,) - - layer_outputs = decoder_layer( - hidden_states, - attention_mask=causal_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - output_router_logits=output_router_logits, - use_cache=use_cache, - cache_position=cache_position, - position_embeddings=position_embeddings, - **flash_attn_kwargs, - ) - - hidden_states = layer_outputs[0] - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - if output_router_logits: - all_router_logits += (layer_outputs[-1],) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - return MoeModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=past_key_values if use_cache else None, - hidden_states=all_hidden_states, - attentions=all_self_attns, - router_logits=all_router_logits, - ) - - def _update_causal_mask( - self, - attention_mask: Union[torch.Tensor, "BlockMask"], - input_tensor: torch.Tensor, - cache_position: torch.Tensor, - past_key_values: Cache, - output_attentions: bool = False, - ): - if self.config._attn_implementation == "flex_attention": - if isinstance(attention_mask, torch.Tensor): - attention_mask = make_flex_block_causal_mask(attention_mask) - return attention_mask - - # We have to provide attention_mask for dynamic mask computation - past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 - using_static_cache = isinstance(past_key_values, StaticCache) - - dtype, device = input_tensor.dtype, input_tensor.device - sequence_length = input_tensor.shape[1] - if using_static_cache: - target_length = past_key_values.get_max_cache_shape() - else: - target_length = ( - attention_mask.shape[-1] - if isinstance(attention_mask, torch.Tensor) - else past_seen_tokens + sequence_length + 1 - ) - - # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). - causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( - attention_mask, - sequence_length=sequence_length, - target_length=target_length, - dtype=dtype, - device=device, - cache_position=cache_position, - batch_size=input_tensor.shape[0], - ) - - if ( - self.config._attn_implementation == "sdpa" - and attention_mask is not None - and attention_mask.device.type in ["cuda", "xpu"] - and not output_attentions - ): - # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when - # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. - # Details: https://github.com/pytorch/pytorch/issues/110213 - min_dtype = torch.finfo(dtype).min - causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) - - return causal_mask - - @staticmethod - def _prepare_4d_causal_attention_mask_with_cache_position( - attention_mask: torch.Tensor, - sequence_length: int, - target_length: int, - dtype: torch.dtype, - device: torch.device, - cache_position: torch.Tensor, - batch_size: int, - **kwargs, - ): - """ - Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape - `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. - - Args: - attention_mask (`torch.Tensor`): - A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape - `(batch_size, 1, query_length, key_value_length)`. - sequence_length (`int`): - The sequence length being processed. - target_length (`int`): - The target length: when generating with static cache, the mask should be as long as the static cache, - to account for the 0 padding, the part of the cache that is not filled yet. - dtype (`torch.dtype`): - The dtype to use for the 4D attention mask. - device (`torch.device`): - The device to place the 4D attention mask on. - cache_position (`torch.Tensor`): - Indices depicting the position of the input sequence tokens in the sequence. - batch_size (`torch.Tensor`): - Batch size. - """ - if attention_mask is not None and attention_mask.dim() == 4: - # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. - causal_mask = attention_mask - else: - min_dtype = torch.finfo(dtype).min - causal_mask = torch.full( - (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device - ) - if sequence_length != 1: - causal_mask = torch.triu(causal_mask, diagonal=1) - causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) - causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) - if attention_mask is not None: - causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit - mask_length = attention_mask.shape[-1] - padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( - causal_mask.device - ) - padding_mask = padding_mask == 0 - causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( - padding_mask, min_dtype - ) - - return causal_mask - - -class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... - - -def load_balancing_loss_func( - router_logits: Union[torch.Tensor, Tuple[torch.Tensor], None], - num_experts: Optional[int] = None, - num_keys: Optional[int] = None, - top_k: int = 2, - attention_mask: Optional[torch.Tensor] = None, -) -> Union[torch.Tensor, int]: - r""" - Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. - - See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss - function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between - experts is too unbalanced. - - Args: - router_logits: - Logits from the `router_gate`, should be a tuple of model.config.num_hidden_layers tensors of - shape [2, batch_size * sequence_length, num_keys]. - num_experts: - Number of experts - num_keys: - Number of keys - top_k: - The number of experts to route per-token, can be also interpreted as the `top-k` routing - parameter. - attention_mask (`torch.Tensor`, *optional*): - The attention_mask used in forward function - shape [batch_size X sequence_length] if not None. - - Returns: - The auxiliary loss. - """ - if router_logits is None or not isinstance(router_logits, tuple): - return 0 - - compute_dtype = router_logits[0].dtype - compute_device = router_logits[0].device - all_expert_indices = [] - all_routing_weights = [] - - for layer_router_logits in router_logits: - layer_router_logits = layer_router_logits.to(compute_device) - - (scores_x, scores_y), (indices_x, indices_y) = layer_router_logits.topk(num_keys, dim=-1) - - all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) - all_indices = indices_x.unsqueeze(-1) * num_keys + indices_y.unsqueeze(-2) - all_scores = all_scores.view(*all_scores.shape[:-2], -1) - all_indices = all_indices.view(*all_indices.shape[:-2], -1) - - _, position_indices = all_scores.topk(top_k, dim=-1) - expert_indices = all_indices.gather(-1, position_indices) - - routing_weights = F.softmax(all_scores, dim=-1) - - all_expert_indices.append(expert_indices) - all_routing_weights.append(routing_weights) - all_expert_indices = torch.cat(all_expert_indices, dim=0) - all_routing_weights = torch.cat(all_routing_weights, dim=0) - - if attention_mask is None: - # Compute the percentage of tokens routed to each experts - all_expert_indices = all_expert_indices.view(-1) - tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device) - pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device) - tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / all_expert_indices.shape[0] - - # Compute the average probability of routing to these experts - router_prob_per_expert = torch.mean(all_routing_weights, dim=0) - else: - batch_size, sequence_length = attention_mask.shape - num_hidden_layers = len(router_logits) - - # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask - expert_attention_mask = ( - attention_mask[None, :, :, None] - .expand((num_hidden_layers, batch_size, sequence_length, top_k)) - .reshape(-1) - .to(compute_device) - ) - all_expert_indices = all_expert_indices.view(-1)[expert_attention_mask.bool()] - - # Compute the percentage of tokens routed to each experts - tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device) - pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device) - tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / torch.sum(expert_attention_mask) - - # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert - router_per_expert_attention_mask = ( - attention_mask[None, :, :, None] - .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) - .reshape(-1, num_experts) - .to(compute_device) - ) - - # Compute the average probability of routing to these experts - router_prob_per_expert = torch.sum(all_routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( - router_per_expert_attention_mask, dim=0 - ) - - overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) - return overall_loss * num_experts - - -@auto_docstring -class Doge2ForCausalLM(Doge2PreTrainedModel, GenerationMixin): - _tied_weights_keys = ["lm_head.weight"] - _tp_plan = {"lm_head": "colwise_rep"} - _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} - - def __init__(self, config): - super().__init__(config) - self.model = Doge2Model(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - self.router_aux_loss_coef = config.router_aux_loss_coef - self.num_experts = config.num_experts - self.num_experts_per_tok = config.num_experts_per_tok - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - self.model = decoder - - def get_decoder(self): - return self.model - - @can_return_tuple - @auto_docstring - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Cache] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - output_router_logits: Optional[bool] = None, - cache_position: Optional[torch.LongTensor] = None, - logits_to_keep: Union[int, torch.Tensor] = 0, - **kwargs: Unpack[KwargsForCausalLM], - ) -> MoeCausalLMOutputWithPast: - r""" - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - logits_to_keep (`int` or `torch.Tensor`, *optional*): - If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all - `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that - token can save memory, which becomes pretty significant for long sequences or large vocabulary size. - If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. - This is useful when using packed tensor format (single dimension for batch and sequence length). - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, DogeForCausalLM - - >>> model = DogeForCausalLM.from_pretrained("meta-doge/Doge-2-7b-hf") - >>> tokenizer = AutoTokenizer.from_pretrained("meta-doge/Doge-2-7b-hf") - - >>> prompt = "Hey, are you conscious? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." - ```""" - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_router_logits = ( - output_router_logits if output_router_logits is not None else self.config.output_router_logits - ) - - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs: MoeModelOutputWithPast = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - output_router_logits=output_router_logits, - cache_position=cache_position, - **kwargs, - ) - - hidden_states = outputs.last_hidden_state - # Only compute necessary logits, and do not upcast them to float if we are not computing the loss - slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep - logits = self.lm_head(hidden_states[:, slice_indices, :]) - - loss = None - if labels is not None: - loss = self.loss_function(logits, labels, vocab_size=self.vocab_size, **kwargs) - - aux_loss = None - if output_router_logits: - aux_loss = load_balancing_loss_func( - outputs.router_logits, - self.num_experts, - math.floor(math.sqrt(self.num_experts)), - self.num_experts_per_tok, - attention_mask, - ) - if labels is not None: - loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device - - return MoeCausalLMOutputWithPast( - loss=loss, - aux_loss=aux_loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - router_logits=outputs.router_logits, - ) - - -@auto_docstring( - custom_intro=""" - The Doge2 Model transformer with a sequence classification head on top (linear layer). - - [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """ -) -class Doge2ForSequenceClassification(Doge2PreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = Doge2Model(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - @can_return_tuple - @auto_docstring - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Cache] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - ) -> SequenceClassifierOutputWithPast: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - - transformer_outputs: BaseModelOutputWithPast = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - ) - hidden_states = transformer_outputs.last_hidden_state - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") - if self.config.pad_token_id is None: - last_non_pad_token = -1 - elif input_ids is not None: - # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id - non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) - token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) - last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) - else: - last_non_pad_token = -1 - logger.warning_once( - f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " - "unexpected if using padding tokens in conjunction with `inputs_embeds.`" - ) - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] - - loss = None - if labels is not None: - loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) - - -__all__ = ["Doge2ForCausalLM", "Doge2Model", "Doge2PreTrainedModel", "Doge2ForSequenceClassification"] +# coding=utf-8 +# Copyright 2025 Jingze Shi and the SmallDoge team and the HuggingFace Inc. team. All rights reserved. +# +# The Doge family of small language models is trained by SmallDoge Team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from torch import nn + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache, StaticCache +from transformers.generation import GenerationMixin +from transformers.integrations import use_kernel_forward_from_hub +from transformers.modeling_attn_mask_utils import AttentionMaskConverter +from transformers.modeling_flash_attention_utils import FlashAttentionKwargs +from transformers.modeling_layers import GradientCheckpointingLayer +from transformers.modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, + MoeCausalLMOutputWithPast, + MoeModelOutputWithPast, + SequenceClassifierOutputWithPast +) +from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update +from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel +from transformers.processing_utils import Unpack +from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS +from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging +from .configuration_doge2 import Doge2Config + + +if is_torch_flex_attn_available(): + from torch.nn.attention.flex_attention import BlockMask + + from transformers.integrations.flex_attention import make_flex_block_causal_mask + + +logger = logging.get_logger(__name__) + + +@use_kernel_forward_from_hub("RMSNorm") +class Doge2RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Doge2RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +ALL_LAYERNORM_LAYERS.append(Doge2RMSNorm) + + +class DogeMLP(nn.Module): + def __init__(self, config: Doge2Config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +class DogeCDMoE(nn.Module): + def __init__(self, config: Doge2Config): + super().__init__() + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.act_fn = ACT2FN[config.hidden_act] + + self.num_experts = config.num_experts + self.num_keys = math.floor(math.sqrt(self.num_experts)) + self.top_k = config.num_experts_per_tok + self.norm_topk_prob = config.norm_topk_prob + + # shared expert + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + + # router gate for retrieval experts + self.router_gate = nn.Linear(self.hidden_size, self.num_keys * 2, bias=False) + + # routed experts + self.down_embed = nn.Embedding(self.num_experts, self.hidden_size) + self.up_embed = nn.Embedding(self.num_experts, self.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + bsz, seq_len, _ = hidden_states.shape + + # get routing logits with router gate + router_logits = self.router_gate(hidden_states).view(2, bsz * seq_len, -1) + + # get experts with the highest routing logits + (scores_x, scores_y), (indices_x, indices_y) = router_logits.topk(self.num_keys, dim=-1) + all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) + all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2) + all_scores = all_scores.view(*all_scores.shape[:-2], -1) + all_indices = all_indices.view(*all_indices.shape[:-2], -1) + scores, position_indices = all_scores.topk(self.top_k, dim=-1) + indices = all_indices.gather(-1, position_indices) + routing_weights = F.softmax(scores, dim=-1) + if self.norm_topk_prob: + routing_weights /= routing_weights.sum(dim=-1, keepdim=True) + + # mix routed experts states with shared expert states + down_embed = self.down_embed(indices) + up_embed = self.up_embed(indices) + experts_weights = torch.matmul(down_embed, hidden_states.view(bsz * seq_len, -1, 1)).view(bsz * seq_len, -1) + experts_weights = self.act_fn(experts_weights) * routing_weights + experts_states = torch.matmul(experts_weights.view(bsz * seq_len, 1, -1), up_embed).view(bsz, seq_len, -1) + hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) + hidden_states = hidden_states + experts_states + return hidden_states, router_logits + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +def eager_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: float, + dropout: float = 0.0, + **kwargs, +): + key_states = repeat_kv(key, module.num_key_value_groups) + value_states = repeat_kv(value, module.num_key_value_groups) + + attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attn_weights + + +class Doge2Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: Doge2Config, layer_idx: int): + super().__init__() + self.config = config + self.layer_idx = layer_idx + self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) + self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads + self.scaling = self.head_dim**-0.5 + self.attention_dropout = config.attention_dropout + self.keep_window_size = config.keep_window_size + + self.q_proj = nn.Linear( + config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias + ) + self.k_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + self.v_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + # # dynamic mask for the QK^T attention weights matrix + # self.A = nn.Parameter(torch.zeros(config.num_key_value_heads)) + # self.dt_proj = nn.Linear( + # config.num_key_value_heads * self.head_dim, config.num_key_value_heads, bias=config.attention_bias + # ) + self.o_proj = nn.Linear( + config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias + ) + self.q_norm = Doge2RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim! + self.k_norm = Doge2RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape + + def forward( + self, + hidden_states: torch.Tensor, + position_embeddings: Tuple[torch.Tensor, torch.Tensor], + attention_mask: Optional[torch.Tensor], + past_key_value: Optional[Cache] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs: Unpack[FlashAttentionKwargs], + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) + key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # # calculate dynamic mask from value_states + # dt_states = self.dt_proj( + # value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1) + # ) + # dt_states = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2) + # attn_mask = self.prepare_dynamic_mask( + # hidden_states=hidden_states, + # dt_states=dt_states, + # keep_window_size=self.keep_window_size, + # attention_mask=attention_mask, + # ) + # attn_mask = repeat_kv(attn_mask, self.num_key_value_groups) + attn_mask = attention_mask + + attention_interface: Callable = eager_attention_forward + if self.config._attn_implementation != "eager": + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask=attn_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights + + def prepare_dynamic_mask( + self, + hidden_states: torch.Tensor, + dt_states: torch.Tensor, + keep_window_size: int = 2048, + attention_mask: Optional[torch.Tensor] = None, + ): + """ + The core idea of DMA is to calculate the dynamic attention mask to mask the tokens that should be masked, so as to form sparse attention. + + Combine `dt_states` with `attention_mask` to generate the final `attn_mask`. + + Args: + hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision. + dt_states (`torch.Tensor`): dt_states of shape `(batch_size, num_kv_heads, key_sequence_length)`. + keep_window_size (`int`): The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value. + attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`. + """ + min_dtype = torch.finfo(hidden_states.dtype).min + dtype = hidden_states.dtype + attn_mask = dt_states[:, :, None, :].expand( + -1, -1, hidden_states.shape[1], -1 + ) # [batch_size, num_kv_heads, query_len, key_len] + active_mask = torch.zeros_like(attn_mask, dtype=dtype, device=attn_mask.device) + if attention_mask is not None: + if attention_mask.dtype == torch.bool: + dtype = hidden_states.dtype + attention_mask = torch.where( + attention_mask, torch.tensor(0.0, device=attention_mask.device, dtype=dtype), min_dtype + ) + attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : attn_mask.shape[-1]] != 0, min_dtype) + if attn_mask.shape[-1] > keep_window_size: + topk_indices = torch.topk( + attn_mask, keep_window_size, dim=-1, largest=True, sorted=False + ).indices + active_mask = active_mask.scatter(-1, topk_indices, 1.0) + attn_mask = attn_mask.masked_fill(active_mask == 0.0, min_dtype) + return attn_mask + + +class Doge2DecoderLayer(GradientCheckpointingLayer): + def __init__(self, config: Doge2Config, layer_idx: int): + super().__init__() + self.hidden_dropout = config.hidden_dropout + + self.input_layernorm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.self_attn = Doge2Attention(config, layer_idx) + self.input_residual = nn.Parameter(torch.ones(config.hidden_size)) + + self.post_attention_layernorm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.mlp = DogeMLP(config) if not config.is_moe else DogeCDMoE(config) + self.post_attention_residual = nn.Parameter(torch.ones(config.hidden_size)) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + output_router_logits: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC + **kwargs: Unpack[FlashAttentionKwargs], + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, sequence_length)` where padding elements are indicated by 0. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, + and should not be returned during inference. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. + position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): + Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, + with `head_dim` being the embedding dimension of each attention head. + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + + # sequence transformation + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + self_attn_weights = None + hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) + hidden_states = self.input_residual * residual + hidden_states + + # state transformation + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + if isinstance(hidden_states, tuple): + hidden_states, router_logits = hidden_states + else: + router_logits = None + hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) + hidden_states = self.post_attention_residual * residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if output_router_logits: + outputs += (router_logits,) + + return outputs + + +@auto_docstring +class Doge2PreTrainedModel(PreTrainedModel): + config_class = Doge2Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["Doge2DecoderLayer"] + _skip_keys_device_placement = ["past_key_values"] + _supports_flash_attn_2 = False + _supports_sdpa = True + _supports_flex_attn = False + _supports_cache_class = True + _supports_quantized_cache = True + _supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) + _supports_attention_backend = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, Doge2RMSNorm): + module.weight.data.fill_(1.0) + + +class Doge2RotaryEmbedding(nn.Module): + def __init__(self, config: Doge2Config, device=None): + super().__init__() + # BC: "rope_type" was originally "type" + if hasattr(config, "rope_scaling") and config.rope_scaling is not None: + self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) + else: + self.rope_type = "default" + self.max_seq_len_cached = config.max_position_embeddings + self.original_max_seq_len = config.max_position_embeddings + + self.config = config + self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] + + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self.original_inv_freq = self.inv_freq + + @torch.no_grad() + @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) + def forward(self, x, position_ids): + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) + position_ids_expanded = position_ids[:, None, :].float() + + device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): # Force float32 + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() * self.attention_scaling + sin = emb.sin() * self.attention_scaling + + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) + + +@auto_docstring +class Doge2Model(Doge2PreTrainedModel): + def __init__(self, config: Doge2Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [Doge2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.norm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.rotary_emb = Doge2RotaryEmbedding(config=config) + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @can_return_tuple + @auto_docstring + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + **flash_attn_kwargs: Unpack[FlashAttentionKwargs], + ) -> MoeModelOutputWithPast: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You must specify exactly one of input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." + ) + use_cache = False + + # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache + if not isinstance(past_key_values, (type(None), Cache)): + raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if use_cache and past_key_values is None: + past_key_values = DynamicCache() + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_router_logits = () if output_router_logits else None + + for decoder_layer in self.layers[: self.config.num_hidden_layers]: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + output_router_logits=output_router_logits, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **flash_attn_kwargs, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if output_router_logits: + all_router_logits += (layer_outputs[-1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + return MoeModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=past_key_values if use_cache else None, + hidden_states=all_hidden_states, + attentions=all_self_attns, + router_logits=all_router_logits, + ) + + def _update_causal_mask( + self, + attention_mask: Union[torch.Tensor, "BlockMask"], + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + output_attentions: bool = False, + ): + if self.config._attn_implementation == "flex_attention": + if isinstance(attention_mask, torch.Tensor): + attention_mask = make_flex_block_causal_mask(attention_mask) + return attention_mask + + # We have to provide attention_mask for dynamic mask computation + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + + dtype, device = input_tensor.dtype, input_tensor.device + sequence_length = input_tensor.shape[1] + if using_static_cache: + target_length = past_key_values.get_max_cache_shape() + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). + causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=target_length, + dtype=dtype, + device=device, + cache_position=cache_position, + batch_size=input_tensor.shape[0], + ) + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type in ["cuda", "xpu"] + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + min_dtype = torch.finfo(dtype).min + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + @staticmethod + def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + cache_position: torch.Tensor, + batch_size: int, + **kwargs, + ): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape + `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, + to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to place the 4D attention mask on. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + min_dtype = torch.finfo(dtype).min + causal_mask = torch.full( + (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device + ) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( + causal_mask.device + ) + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + + return causal_mask + + +class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... + + +def load_balancing_loss_func( + router_logits: Union[torch.Tensor, Tuple[torch.Tensor], None], + num_experts: Optional[int] = None, + num_keys: Optional[int] = None, + top_k: int = 2, + attention_mask: Optional[torch.Tensor] = None, +) -> Union[torch.Tensor, int]: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + router_logits: + Logits from the `router_gate`, should be a tuple of model.config.num_hidden_layers tensors of + shape [2, batch_size * sequence_length, num_keys]. + num_experts: + Number of experts + num_keys: + Number of keys + top_k: + The number of experts to route per-token, can be also interpreted as the `top-k` routing + parameter. + attention_mask (`torch.Tensor`, *optional*): + The attention_mask used in forward function + shape [batch_size X sequence_length] if not None. + + Returns: + The auxiliary loss. + """ + if router_logits is None or not isinstance(router_logits, tuple): + return 0 + + compute_dtype = router_logits[0].dtype + compute_device = router_logits[0].device + all_expert_indices = [] + all_routing_weights = [] + + for layer_router_logits in router_logits: + layer_router_logits = layer_router_logits.to(compute_device) + + (scores_x, scores_y), (indices_x, indices_y) = layer_router_logits.topk(num_keys, dim=-1) + + all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) + all_indices = indices_x.unsqueeze(-1) * num_keys + indices_y.unsqueeze(-2) + all_scores = all_scores.view(*all_scores.shape[:-2], -1) + all_indices = all_indices.view(*all_indices.shape[:-2], -1) + + _, position_indices = all_scores.topk(top_k, dim=-1) + expert_indices = all_indices.gather(-1, position_indices) + + routing_weights = F.softmax(all_scores, dim=-1) + + all_expert_indices.append(expert_indices) + all_routing_weights.append(routing_weights) + all_expert_indices = torch.cat(all_expert_indices, dim=0) + all_routing_weights = torch.cat(all_routing_weights, dim=0) + + if attention_mask is None: + # Compute the percentage of tokens routed to each experts + all_expert_indices = all_expert_indices.view(-1) + tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device) + pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device) + tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / all_expert_indices.shape[0] + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.mean(all_routing_weights, dim=0) + else: + batch_size, sequence_length = attention_mask.shape + num_hidden_layers = len(router_logits) + + # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask + expert_attention_mask = ( + attention_mask[None, :, :, None] + .expand((num_hidden_layers, batch_size, sequence_length, top_k)) + .reshape(-1) + .to(compute_device) + ) + all_expert_indices = all_expert_indices.view(-1)[expert_attention_mask.bool()] + + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device) + pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device) + tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / torch.sum(expert_attention_mask) + + # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert + router_per_expert_attention_mask = ( + attention_mask[None, :, :, None] + .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) + .reshape(-1, num_experts) + .to(compute_device) + ) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.sum(all_routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( + router_per_expert_attention_mask, dim=0 + ) + + overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) + return overall_loss * num_experts + + +@auto_docstring +class Doge2ForCausalLM(Doge2PreTrainedModel, GenerationMixin): + _tied_weights_keys = ["lm_head.weight"] + _tp_plan = {"lm_head": "colwise_rep"} + _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} + + def __init__(self, config): + super().__init__(config) + self.model = Doge2Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.router_aux_loss_coef = config.router_aux_loss_coef + self.num_experts = config.num_experts + self.num_experts_per_tok = config.num_experts_per_tok + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @can_return_tuple + @auto_docstring + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + logits_to_keep: Union[int, torch.Tensor] = 0, + **kwargs: Unpack[KwargsForCausalLM], + ) -> MoeCausalLMOutputWithPast: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + logits_to_keep (`int` or `torch.Tensor`, *optional*): + If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. + This is useful when using packed tensor format (single dimension for batch and sequence length). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, DogeForCausalLM + + >>> model = DogeForCausalLM.from_pretrained("meta-doge/Doge-2-7b-hf") + >>> tokenizer = AutoTokenizer.from_pretrained("meta-doge/Doge-2-7b-hf") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs: MoeModelOutputWithPast = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + cache_position=cache_position, + **kwargs, + ) + + hidden_states = outputs.last_hidden_state + # Only compute necessary logits, and do not upcast them to float if we are not computing the loss + slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep + logits = self.lm_head(hidden_states[:, slice_indices, :]) + + loss = None + if labels is not None: + loss = self.loss_function(logits, labels, vocab_size=self.vocab_size, **kwargs) + + aux_loss = None + if output_router_logits: + aux_loss = load_balancing_loss_func( + outputs.router_logits, + self.num_experts, + math.floor(math.sqrt(self.num_experts)), + self.num_experts_per_tok, + attention_mask, + ) + if labels is not None: + loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device + + return MoeCausalLMOutputWithPast( + loss=loss, + aux_loss=aux_loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + router_logits=outputs.router_logits, + ) + + +@auto_docstring( + custom_intro=""" + The Doge2 Model transformer with a sequence classification head on top (linear layer). + + [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """ +) +class Doge2ForSequenceClassification(Doge2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = Doge2Model(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @can_return_tuple + @auto_docstring + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + ) -> SequenceClassifierOutputWithPast: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + transformer_outputs: BaseModelOutputWithPast = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + hidden_states = transformer_outputs.last_hidden_state + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + last_non_pad_token = -1 + elif input_ids is not None: + # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id + non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) + token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) + last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) + else: + last_non_pad_token = -1 + logger.warning_once( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] + + loss = None + if labels is not None: + loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +__all__ = ["Doge2ForCausalLM", "Doge2Model", "Doge2PreTrainedModel", "Doge2ForSequenceClassification"]