JingzeShi commited on
Commit
3756606
·
verified ·
1 Parent(s): d1bf7e2

Upload Doge2ForCausalLM

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +41 -0
  3. configuration_doge2.py +242 -0
  4. generation_config.json +7 -0
  5. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Doge2ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_doge2.Doge2Config",
9
+ "AutoModelForCausalLM": "modeling_doge2.Doge2ForCausalLM"
10
+ },
11
+ "bos_token_id": 151643,
12
+ "dynamic_mask_ratio": 0.0,
13
+ "eos_token_id": 151645,
14
+ "hidden_act": "silu",
15
+ "hidden_dropout": 0.0,
16
+ "hidden_size": 2048,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 6144,
19
+ "is_moe": false,
20
+ "keep_window_size": 8192,
21
+ "max_position_embeddings": 8192,
22
+ "model_type": "doge2",
23
+ "norm_topk_prob": false,
24
+ "num_attention_heads": 16,
25
+ "num_experts": 4096,
26
+ "num_experts_per_tok": 64,
27
+ "num_hidden_layers": 28,
28
+ "num_key_value_heads": 8,
29
+ "output_router_logits": false,
30
+ "pad_token_id": 151643,
31
+ "rms_norm_eps": 1e-06,
32
+ "rope_scaling": null,
33
+ "rope_theta": 100000.0,
34
+ "router_aux_loss_coef": 0.001,
35
+ "tie_word_embeddings": true,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.52.3",
38
+ "unk_token_id": 151643,
39
+ "use_cache": true,
40
+ "vocab_size": 151936
41
+ }
configuration_doge2.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 Jingze Shi and the SmallDoge team and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from transformers.configuration_utils import PretrainedConfig
16
+ from transformers.modeling_rope_utils import rope_config_validation
17
+
18
+
19
+ class Doge2Config(PretrainedConfig):
20
+ r"""
21
+ This is the configuration class to store the configuration of a [`Doge2Model`]. It is used to instantiate an Doge2
22
+ model according to the specified arguments, defining the model architecture like [SmallDoge/Doge2-20M](https://huggingface.co/SmallDoge/Doge2-20M).
23
+
24
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
25
+ documentation from [`PretrainedConfig`] for more information.
26
+
27
+ Args:
28
+ vocab_size (`int`, *optional*, defaults to 32768):
29
+ Vocabulary size of the Doge2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Doge2Model`]
30
+ hidden_size (`int`, *optional*, defaults to 1024):
31
+ Dimension of the hidden representations.
32
+ intermediate_size (`int`, *optional*, defaults to 4096):
33
+ Dimension of the MLP representations.
34
+ num_hidden_layers (`int`, *optional*, defaults to 32):
35
+ Number of hidden layers in the Transformer decoder.
36
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
37
+ Dropout probability for each sequence transformation and state transformation module.
38
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
39
+ The non-linear activation function (function or string) in the decoder.
40
+ initializer_range (`float`, *optional*, defaults to 0.02):
41
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
42
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
43
+ The epsilon used by the rms normalization layers.
44
+ use_cache (`bool`, *optional*, defaults to `True`):
45
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
46
+ relevant if `config.is_decoder=True`.
47
+ bos_token_id (`int`, *optional*, defaults to None):
48
+ Beginning of stream token id.
49
+ eos_token_id (`int`, *optional*, defaults to 2):
50
+ End of stream token id.
51
+ pad_token_id (`int`, *optional*, defaults to 0):
52
+ Padding token id.
53
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
54
+ Whether to tie weight embeddings
55
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
56
+ The maximum sequence length that this model might ever be used with.
57
+ rope_theta (`float`, *optional*, defaults to 10000.0):
58
+ The base period of the RoPE embeddings.
59
+ rope_scaling (`Dict`, *optional*):
60
+ Dictionary containing the scaling configuration for the RoPE embeddings.
61
+ NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
62
+ Doge family of small models use `{ 'rope_type': 'dynamic', 'factor': 4.0, 'original_max_position_embeddings': 2048 }` as the default value.
63
+ Expected contents:
64
+ `rope_type` (`str`):
65
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
66
+ `factor` (`float`, *optional*):
67
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
68
+ In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
69
+ `original_max_position_embeddings` (`int`, *optional*):
70
+ Used with 'dynamic', 'longrope' and 'llama3'.
71
+ The original max position embeddings used during pretraining.
72
+ `attention_factor` (`float`, *optional*):
73
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
74
+ computation.
75
+ If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
76
+ `beta_fast` (`float`, *optional*):
77
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
78
+ ramp function. If unspecified, it defaults to 32.
79
+ `beta_slow` (`float`, *optional*):
80
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
81
+ ramp function. If unspecified, it defaults to 1.
82
+ `short_factor` (`List[float]`, *optional*):
83
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
84
+ Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
85
+ `long_factor` (`List[float]`, *optional*):
86
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
87
+ Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
88
+ `low_freq_factor` (`float`, *optional*):
89
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
90
+ `high_freq_factor` (`float`, *optional*):
91
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
92
+ num_attention_heads (`int`, *optional*, defaults to 8):
93
+ Number of attention heads for each attention layer in the Transformer decoder.
94
+ num_key_value_heads (`int`, *optional*):
95
+ This is the number of key_value heads that should be used to implement Grouped Query Attention.
96
+ If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
97
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
98
+ When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
99
+ For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
100
+ If it is not specified, will default to `num_attention_heads`.
101
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
102
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
103
+ attention_dropout (`float`, *optional*, defaults to 0.0):
104
+ The dropout ratio for the attention probabilities.
105
+ keep_window_size (`int`, *optional*, defaults to 2048):
106
+ The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
107
+ dynamic_mask_ratio (`float`, *optional*, defaults to 0.0):
108
+ The ratio to control the proportion of the dynamic mask filled with the minimum value. For more details checkout [this paper](https://arxiv.org/pdf/2412.11834).
109
+ is_moe (`bool`, *optional*, defaults to `False`):
110
+ Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize. For more details checkout [this paper](https://arxiv.org/pdf/2412.11834).
111
+ num_experts (`int`, *optional*, defaults to 4096):
112
+ Number of routed experts in the model. This is only used when `is_moe=True`.
113
+ num_experts_per_tok (`int`, *optional*, defaults to 64):
114
+ Number of selected experts to route per-token.
115
+ norm_topk_prob (`bool`, *optional*, defaults to `False`):
116
+ Whether to normalize the topk probabilities.
117
+ output_router_logits (`bool`, *optional*, defaults to `False`):
118
+ Whether or not the router logits should be returned by the model. Enabeling this will also
119
+ allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
120
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
121
+ The aux loss factor for the total loss.
122
+
123
+ ```python
124
+ >>> from transformers import Doge2Config, Doge2Model
125
+
126
+ >>> # Initializing a Doge2-320M style configuration
127
+ >>> configuration = Doge2Config()
128
+
129
+ >>> # Initializing a model from the Doge2-320M style configuration
130
+ >>> model = Doge2Model(configuration)
131
+
132
+ >>> # Accessing the model configuration
133
+ >>> configuration = model.config
134
+ ```"""
135
+
136
+ model_type = "doge2"
137
+ keys_to_ignore_at_inference = ["past_key_values"]
138
+
139
+ # Default tensor parallel plan for base model `Doge2Model`
140
+ base_model_tp_plan = {
141
+ "layers.*.self_attn.q_proj": "colwise",
142
+ "layers.*.self_attn.k_proj": "colwise",
143
+ "layers.*.self_attn.v_proj": "colwise",
144
+ "layers.*.self_attn.dt_proj": "rowwise",
145
+ "layers.*.self_attn.o_proj": "rowwise",
146
+ "layers.*.input_layernorm.weight": "sequence_parallel",
147
+ "layers.*.input_residual.weight": "sequence_parallel",
148
+ "layers.*.post_attention_layernorm.weight": "sequence_parallel",
149
+ "layers.*.post_attention_residual.weight": "sequence_parallel",
150
+ "norm.weight": "sequence_parallel",
151
+ "layers.*.mlp.gate_proj": "colwise",
152
+ "layers.*.mlp.up_proj": "colwise",
153
+ "layers.*.mlp.down_proj": "rowwise",
154
+ "layers.*.mlp.router_gate": "colwise_rep",
155
+ "layers.*.mlp.down_embed": "rowwise_rep",
156
+ "layers.*.mlp.up_embed": "rowwise_rep",
157
+ }
158
+ base_model_pp_plan = {
159
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
160
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
161
+ "norm": (["hidden_states"], ["hidden_states"]),
162
+ }
163
+
164
+ def __init__(
165
+ self,
166
+ vocab_size=32768,
167
+ hidden_size=1024,
168
+ intermediate_size=4096,
169
+ num_hidden_layers=32,
170
+ hidden_dropout=0.0,
171
+ hidden_act="silu",
172
+ initializer_range=0.02,
173
+ rms_norm_eps=1e-06,
174
+ use_cache=True,
175
+ bos_token_id=None,
176
+ eos_token_id=2,
177
+ pad_token_id=0,
178
+ tie_word_embeddings=False,
179
+ max_position_embeddings=2048,
180
+ rope_theta=10000.0,
181
+ rope_scaling=None,
182
+ num_attention_heads=8,
183
+ num_key_value_heads=None,
184
+ attention_bias=False,
185
+ attention_dropout=0.0,
186
+ keep_window_size=8192,
187
+ dynamic_mask_ratio=0.0,
188
+ is_moe=False,
189
+ num_experts=4096,
190
+ num_experts_per_tok=64,
191
+ norm_topk_prob=False,
192
+ output_router_logits=False,
193
+ router_aux_loss_coef=0.001,
194
+ **kwargs,
195
+ ):
196
+ self.vocab_size = vocab_size
197
+ self.hidden_size = hidden_size
198
+ self.intermediate_size = intermediate_size
199
+ self.num_hidden_layers = num_hidden_layers
200
+
201
+ self.hidden_dropout = hidden_dropout
202
+ self.hidden_act = hidden_act
203
+ self.initializer_range = initializer_range
204
+ self.rms_norm_eps = rms_norm_eps
205
+ self.use_cache = use_cache
206
+
207
+ self.max_position_embeddings = max_position_embeddings
208
+ self.rope_theta = rope_theta
209
+ self.rope_scaling = rope_scaling
210
+ self.num_attention_heads = num_attention_heads
211
+ self.num_key_value_heads = num_key_value_heads
212
+ self.attention_bias = attention_bias
213
+ self.attention_dropout = attention_dropout
214
+ self.keep_window_size = keep_window_size
215
+ self.dynamic_mask_ratio = dynamic_mask_ratio
216
+ self.is_moe = is_moe
217
+ self.num_experts = num_experts
218
+ self.num_experts_per_tok = num_experts_per_tok
219
+ self.norm_topk_prob = norm_topk_prob
220
+ self.output_router_logits = output_router_logits
221
+ self.router_aux_loss_coef = router_aux_loss_coef
222
+
223
+ # Validate the correctness of rotary position embeddings parameters
224
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
225
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
226
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
227
+ rope_config_validation(self)
228
+
229
+ # for backward compatibility
230
+ if num_key_value_heads is None:
231
+ self.num_key_value_heads = num_attention_heads
232
+
233
+ super().__init__(
234
+ bos_token_id=bos_token_id,
235
+ eos_token_id=eos_token_id,
236
+ pad_token_id=pad_token_id,
237
+ tie_word_embeddings=tie_word_embeddings,
238
+ **kwargs,
239
+ )
240
+
241
+
242
+ __all__ = ["Doge2Config"]
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "pad_token_id": 151643,
6
+ "transformers_version": "4.52.3"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:688c2a11c41f514795dca8c2bbb922f61dc03531e4bfd08dcb456b63f1e5e4ee
3
+ size 3441421024