|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.integrations import use_kernel_forward_from_hub |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
MoeCausalLMOutputWithPast, |
|
MoeModelOutputWithPast, |
|
SequenceClassifierOutputWithPast |
|
) |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging |
|
from .configuration_doge2 import Doge2Config |
|
|
|
|
|
if is_torch_flex_attn_available(): |
|
from torch.nn.attention.flex_attention import BlockMask |
|
|
|
from transformers.integrations.flex_attention import make_flex_block_causal_mask |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
class Doge2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Doge2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(Doge2RMSNorm) |
|
|
|
|
|
class DogeMLP(nn.Module): |
|
def __init__(self, config: Doge2Config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
class DogeCDMoE(nn.Module): |
|
def __init__(self, config: Doge2Config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
self.num_experts = config.num_experts |
|
self.num_keys = math.floor(math.sqrt(self.num_experts)) |
|
self.top_k = config.num_experts_per_tok |
|
self.norm_topk_prob = config.norm_topk_prob |
|
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
|
|
|
self.router_gate = nn.Linear(self.hidden_size, self.num_keys * 2, bias=False) |
|
|
|
|
|
self.down_embed = nn.Embedding(self.num_experts, self.hidden_size) |
|
self.up_embed = nn.Embedding(self.num_experts, self.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
bsz, seq_len, _ = hidden_states.shape |
|
|
|
|
|
router_logits = self.router_gate(hidden_states).view(2, bsz * seq_len, -1) |
|
|
|
|
|
(scores_x, scores_y), (indices_x, indices_y) = router_logits.topk(self.num_keys, dim=-1) |
|
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) |
|
all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2) |
|
all_scores = all_scores.view(*all_scores.shape[:-2], -1) |
|
all_indices = all_indices.view(*all_indices.shape[:-2], -1) |
|
scores, position_indices = all_scores.topk(self.top_k, dim=-1) |
|
indices = all_indices.gather(-1, position_indices) |
|
routing_weights = F.softmax(scores, dim=-1) |
|
if self.norm_topk_prob: |
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
|
|
down_embed = self.down_embed(indices) |
|
up_embed = self.up_embed(indices) |
|
experts_weights = torch.matmul(down_embed, hidden_states.view(bsz * seq_len, -1, 1)).view(bsz * seq_len, -1) |
|
experts_weights = self.act_fn(experts_weights) * routing_weights |
|
experts_states = torch.matmul(experts_weights.view(bsz * seq_len, 1, -1), up_embed).view(bsz, seq_len, -1) |
|
hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) |
|
hidden_states = hidden_states + experts_states |
|
return hidden_states, router_logits |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class Doge2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: Doge2Config, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = self.head_dim**-0.5 |
|
self.attention_dropout = config.attention_dropout |
|
self.keep_window_size = config.keep_window_size |
|
|
|
self.q_proj = nn.Linear( |
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.v_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.o_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
) |
|
self.q_norm = Doge2RMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
self.k_norm = Doge2RMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_mask = attention_mask |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask=attn_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output, attn_weights |
|
|
|
def prepare_dynamic_mask( |
|
self, |
|
hidden_states: torch.Tensor, |
|
dt_states: torch.Tensor, |
|
keep_window_size: int = 2048, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
""" |
|
The core idea of DMA is to calculate the dynamic attention mask to mask the tokens that should be masked, so as to form sparse attention. |
|
|
|
Combine `dt_states` with `attention_mask` to generate the final `attn_mask`. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision. |
|
dt_states (`torch.Tensor`): dt_states of shape `(batch_size, num_kv_heads, key_sequence_length)`. |
|
keep_window_size (`int`): The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value. |
|
attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`. |
|
""" |
|
min_dtype = torch.finfo(hidden_states.dtype).min |
|
dtype = hidden_states.dtype |
|
attn_mask = dt_states[:, :, None, :].expand( |
|
-1, -1, hidden_states.shape[1], -1 |
|
) |
|
active_mask = torch.zeros_like(attn_mask, dtype=dtype, device=attn_mask.device) |
|
if attention_mask is not None: |
|
if attention_mask.dtype == torch.bool: |
|
dtype = hidden_states.dtype |
|
attention_mask = torch.where( |
|
attention_mask, torch.tensor(0.0, device=attention_mask.device, dtype=dtype), min_dtype |
|
) |
|
attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : attn_mask.shape[-1]] != 0, min_dtype) |
|
if attn_mask.shape[-1] > keep_window_size: |
|
topk_indices = torch.topk( |
|
attn_mask, keep_window_size, dim=-1, largest=True, sorted=False |
|
).indices |
|
active_mask = active_mask.scatter(-1, topk_indices, 1.0) |
|
attn_mask = attn_mask.masked_fill(active_mask == 0.0, min_dtype) |
|
return attn_mask |
|
|
|
|
|
class Doge2DecoderLayer(GradientCheckpointingLayer): |
|
def __init__(self, config: Doge2Config, layer_idx: int): |
|
super().__init__() |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
self.input_layernorm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.self_attn = Doge2Attention(config, layer_idx) |
|
self.input_residual = nn.Parameter(torch.ones(config.hidden_size)) |
|
|
|
self.post_attention_layernorm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.mlp = DogeMLP(config) if not config.is_moe else DogeCDMoE(config) |
|
self.post_attention_residual = nn.Parameter(torch.ones(config.hidden_size)) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, |
|
and should not be returned during inference. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
with `head_dim` being the embedding dimension of each attention head. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
self_attn_weights = None |
|
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) |
|
hidden_states = self.input_residual * residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
if isinstance(hidden_states, tuple): |
|
hidden_states, router_logits = hidden_states |
|
else: |
|
router_logits = None |
|
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) |
|
hidden_states = self.post_attention_residual * residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
|
|
return outputs |
|
|
|
|
|
@auto_docstring |
|
class Doge2PreTrainedModel(PreTrainedModel): |
|
config_class = Doge2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Doge2DecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = False |
|
_supports_sdpa = True |
|
_supports_flex_attn = False |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = False |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, Doge2RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class Doge2RotaryEmbedding(nn.Module): |
|
def __init__(self, config: Doge2Config, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
@auto_docstring |
|
class Doge2Model(Doge2PreTrainedModel): |
|
def __init__(self, config: Doge2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[Doge2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = Doge2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = Doge2RotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> MoeModelOutputWithPast: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
output_router_logits=output_router_logits, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if output_router_logits: |
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: Union[torch.Tensor, "BlockMask"], |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool = False, |
|
): |
|
if self.config._attn_implementation == "flex_attention": |
|
if isinstance(attention_mask, torch.Tensor): |
|
attention_mask = make_flex_block_causal_mask(attention_mask) |
|
return attention_mask |
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu"] |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
**kwargs, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape |
|
`(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, |
|
to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to place the 4D attention mask on. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
|
|
def load_balancing_loss_func( |
|
router_logits: Union[torch.Tensor, Tuple[torch.Tensor], None], |
|
num_experts: Optional[int] = None, |
|
num_keys: Optional[int] = None, |
|
top_k: int = 2, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, int]: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
router_logits: |
|
Logits from the `router_gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
shape [2, batch_size * sequence_length, num_keys]. |
|
num_experts: |
|
Number of experts |
|
num_keys: |
|
Number of keys |
|
top_k: |
|
The number of experts to route per-token, can be also interpreted as the `top-k` routing |
|
parameter. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
The attention_mask used in forward function |
|
shape [batch_size X sequence_length] if not None. |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if router_logits is None or not isinstance(router_logits, tuple): |
|
return 0 |
|
|
|
compute_dtype = router_logits[0].dtype |
|
compute_device = router_logits[0].device |
|
all_expert_indices = [] |
|
all_routing_weights = [] |
|
|
|
for layer_router_logits in router_logits: |
|
layer_router_logits = layer_router_logits.to(compute_device) |
|
|
|
(scores_x, scores_y), (indices_x, indices_y) = layer_router_logits.topk(num_keys, dim=-1) |
|
|
|
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) |
|
all_indices = indices_x.unsqueeze(-1) * num_keys + indices_y.unsqueeze(-2) |
|
all_scores = all_scores.view(*all_scores.shape[:-2], -1) |
|
all_indices = all_indices.view(*all_indices.shape[:-2], -1) |
|
|
|
_, position_indices = all_scores.topk(top_k, dim=-1) |
|
expert_indices = all_indices.gather(-1, position_indices) |
|
|
|
routing_weights = F.softmax(all_scores, dim=-1) |
|
|
|
all_expert_indices.append(expert_indices) |
|
all_routing_weights.append(routing_weights) |
|
all_expert_indices = torch.cat(all_expert_indices, dim=0) |
|
all_routing_weights = torch.cat(all_routing_weights, dim=0) |
|
|
|
if attention_mask is None: |
|
|
|
all_expert_indices = all_expert_indices.view(-1) |
|
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device) |
|
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device) |
|
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / all_expert_indices.shape[0] |
|
|
|
|
|
router_prob_per_expert = torch.mean(all_routing_weights, dim=0) |
|
else: |
|
batch_size, sequence_length = attention_mask.shape |
|
num_hidden_layers = len(router_logits) |
|
|
|
|
|
expert_attention_mask = ( |
|
attention_mask[None, :, :, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k)) |
|
.reshape(-1) |
|
.to(compute_device) |
|
) |
|
all_expert_indices = all_expert_indices.view(-1)[expert_attention_mask.bool()] |
|
|
|
|
|
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device) |
|
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device) |
|
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / torch.sum(expert_attention_mask) |
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
attention_mask[None, :, :, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
.reshape(-1, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
router_prob_per_expert = torch.sum(all_routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
router_per_expert_attention_mask, dim=0 |
|
) |
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) |
|
return overall_loss * num_experts |
|
|
|
|
|
@auto_docstring |
|
class Doge2ForCausalLM(Doge2PreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Doge2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
self.num_experts = config.num_experts |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**kwargs: Unpack[KwargsForCausalLM], |
|
) -> MoeCausalLMOutputWithPast: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
logits_to_keep (`int` or `torch.Tensor`, *optional*): |
|
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. |
|
This is useful when using packed tensor format (single dimension for batch and sequence length). |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, DogeForCausalLM |
|
|
|
>>> model = DogeForCausalLM.from_pretrained("meta-doge/Doge-2-7b-hf") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("meta-doge/Doge-2-7b-hf") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
|
|
outputs: MoeModelOutputWithPast = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits, labels, vocab_size=self.vocab_size, **kwargs) |
|
|
|
aux_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits, |
|
self.num_experts, |
|
math.floor(math.sqrt(self.num_experts)), |
|
self.num_experts_per_tok, |
|
attention_mask, |
|
) |
|
if labels is not None: |
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|
|
|
|
@auto_docstring( |
|
custom_intro=""" |
|
The Doge2 Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""" |
|
) |
|
class Doge2ForSequenceClassification(Doge2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = Doge2Model(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) -> SequenceClassifierOutputWithPast: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
|
|
transformer_outputs: BaseModelOutputWithPast = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
hidden_states = transformer_outputs.last_hidden_state |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
last_non_pad_token = -1 |
|
elif input_ids is not None: |
|
|
|
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) |
|
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) |
|
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) |
|
else: |
|
last_non_pad_token = -1 |
|
logger.warning_once( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
__all__ = ["Doge2ForCausalLM", "Doge2Model", "Doge2PreTrainedModel", "Doge2ForSequenceClassification"] |
|
|