JingzeShi commited on
Commit
4e4242c
·
verified ·
1 Parent(s): 0cd58cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -11
README.md CHANGED
@@ -51,17 +51,17 @@ Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-La
51
 
52
  ## Model Details
53
 
54
- We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-320M-checkpoint). These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-320M-Instruct).
55
 
56
 
57
  **Pre-Training**:
58
 
59
  | Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
60
  |---|---|---|---|---|---|---|---|---|
61
- | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
62
- | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
63
- | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
64
- | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 32k | 2048 | 64B | 2e-3 | 2M | bfloat16 | 1856 |
65
 
66
  **Evaluation**:
67
 
@@ -70,17 +70,12 @@ We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.c
70
  | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
71
  | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
72
  | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 70.1 | 43.4 | 34.4 | 52.2 | 28 |
73
- | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | 33.8 | 9.4 | 52.1 | 73.9 | 52.7 | 37.9 | 55.3 | 16 |
74
-
75
- > [!NOTE]
76
- > All evaluations are done using five-shot settings, without additional training on the benchmarks.
77
-
78
 
79
  **Procedure**:
80
 
81
  [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/p8x93v5l)
82
 
83
-
84
  **Environment**:
85
 
86
  - Image: nvcr.io/nvidia/pytorch:24.12-py3
 
51
 
52
  ## Model Details
53
 
54
+ We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-60M-checkpoint). These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-60M-Instruct).
55
 
56
 
57
  **Pre-Training**:
58
 
59
  | Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
60
  |---|---|---|---|---|---|---|---|---|
61
+ | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
62
+ | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
63
+ | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
64
+ | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 32k | 2048 | 64B | 2e-3 | 2M | bfloat16 | 1856 |
65
 
66
  **Evaluation**:
67
 
 
70
  | [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
71
  | [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
72
  | [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 70.1 | 43.4 | 34.4 | 52.2 | 28 |
73
+ | [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | 35.6 | 9.4 | 55.4 | 73.9 | 52.7 | 37.9 | 59.3 | 16 |
 
 
 
 
74
 
75
  **Procedure**:
76
 
77
  [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/p8x93v5l)
78
 
 
79
  **Environment**:
80
 
81
  - Image: nvcr.io/nvidia/pytorch:24.12-py3