Question Answering
Transformers
Safetensors
English
doge
text-generation
custom_code
File size: 13,311 Bytes
1b67b34
 
 
 
 
 
fa13e11
 
 
 
1b67b34
fa13e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b67b34
fa13e11
 
 
 
 
 
a84e78f
fa13e11
 
a84e78f
d7b18a1
a84e78f
fa13e11
 
 
 
 
 
 
1b67b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa13e11
 
 
 
 
1b67b34
a84e78f
1b67b34
fa13e11
 
a84e78f
fa13e11
1b67b34
a84e78f
fa13e11
1b67b34
a84e78f
fa13e11
 
1b67b34
a84e78f
fa13e11
 
 
 
 
 
 
1b67b34
a84e78f
fa13e11
1b67b34
a84e78f
fa13e11
 
 
 
 
 
1b67b34
 
a84e78f
1b67b34
 
 
a84e78f
fa13e11
 
1b67b34
 
fa13e11
1b67b34
d7b18a1
1b67b34
d7b18a1
1b67b34
d7b18a1
1b67b34
d7b18a1
1b67b34
 
 
 
 
 
 
 
 
 
 
 
 
 
fa13e11
 
 
5e5797f
 
 
 
 
 
 
 
 
 
 
fa13e11
 
 
 
 
a84e78f
 
fa13e11
 
 
 
 
 
a84e78f
 
 
1b67b34
 
 
 
fa13e11
a84e78f
fa13e11
a84e78f
fa13e11
d7b18a1
 
 
 
fa13e11
 
 
 
 
 
1b67b34
fa13e11
 
 
 
 
 
1b67b34
 
 
 
fa13e11
a84e78f
fa13e11
a84e78f
fa13e11
d7b18a1
 
 
fa13e11
 
 
 
 
 
 
 
a84e78f
 
 
 
fa13e11
 
 
a84e78f
fa13e11
 
 
5e5797f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#                馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃
#           This file was automatically generated from src/transformers/models/doge/modular_doge.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_doge.py file directly. One of our CI enforces this.
#                馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃
# coding=utf-8
# Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on the Wonderful Matrices paper implementation.
# The Doge family of small language models is trained by Jingze Shi.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation


class DogeConfig(PretrainedConfig):
    r"""

    This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge

    model according to the specified arguments, defining the model architecture like [SmallDoge/Doge-20M](https://huggingface.co/SmallDoge/Doge-20M).



    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the

    documentation from [`PretrainedConfig`] for more information.



    Args:

        vocab_size (`int`, *optional*, defaults to 32768):

            Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]

        hidden_size (`int`, *optional*, defaults to 1024):

            Dimension of the hidden representations.

        intermediate_size (`int`, *optional*, defaults to 2048):

            Dimension of the MLP representations.

        num_hidden_layers (`int`, *optional*, defaults to 32):

            Number of hidden layers in the Transformer decoder.

        hidden_bias (`bool`, *optional*, defaults to `False`):

            Whether to use bias in the hidden layers.

        hidden_dropout (`float`, *optional*, defaults to 0.0):

            Dropout probability for each sequence transformation and state transformation module.

        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):

            The non-linear activation function (function or string) in the decoder.

        initializer_range (`float`, *optional*, defaults to 0.02):

            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

        rms_norm_eps (`float`, *optional*, defaults to 1e-06):

            The epsilon used by the rms normalization layers.

        use_cache (`bool`, *optional*, defaults to `True`):

            Whether or not the model should return the last key/values attentions (not used by all models). Only

            relevant if `config.is_decoder=True`.

        bos_token_id (`int`, *optional*, defaults to 0):

            Beginning of stream token id.

        eos_token_id (`int`, *optional*, defaults to 1):

            End of stream token id.

        pad_token_id (`int`, *optional*, defaults to 2):

            Padding token id.

        tie_word_embeddings (`bool`, *optional*, defaults to `False`):

            Whether to tie weight embeddings

        max_position_embeddings (`int`, *optional*, defaults to 2048):

            The maximum sequence length that this model might ever be used with.

        rope_theta (`float`, *optional*, defaults to 10000.0):

            The base period of the RoPE embeddings.

        rope_scaling (`Dict`, *optional*):

            Dictionary containing the scaling configuration for the RoPE embeddings.

            NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.

            Doge family of small models use `{ 'rope_type': 'dynamic', 'factor': 4.0, 'original_max_position_embeddings': 2048 }` as the default value.

            Expected contents:

                `rope_type` (`str`):

                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.

                `factor` (`float`, *optional*):

                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.

                    In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.

                `original_max_position_embeddings` (`int`, *optional*):

                    Used with 'dynamic', 'longrope' and 'llama3'.

                    The original max position embeddings used during pretraining.

                `attention_factor` (`float`, *optional*):

                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention

                    computation.

                    If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.

                `beta_fast` (`float`, *optional*):

                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear

                    ramp function. If unspecified, it defaults to 32.

                `beta_slow` (`float`, *optional*):

                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear

                    ramp function. If unspecified, it defaults to 1.

                `short_factor` (`List[float]`, *optional*):

                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).

                    Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2

                `long_factor` (`List[float]`, *optional*):

                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).

                    Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2

                `low_freq_factor` (`float`, *optional*):

                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE

                `high_freq_factor` (`float`, *optional*):

                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE

        num_attention_heads (`int`, *optional*, defaults to 8):

            Number of attention heads for each attention layer in the Transformer decoder.

        num_key_value_heads (`int`, *optional*):

            This is the number of key_value heads that should be used to implement Grouped Query Attention.

            If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if

            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.

            When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.

            For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).

            If it is not specified, will default to `num_attention_heads`.

        attention_dropout (`float`, *optional*, defaults to 0.0):

            The dropout ratio for the attention probabilities.

        dynamic_mask_ratio (`float`, *optional*, defaults to 0.0):

            The ratio to control the proportion of the dynamic mask filled with the minimum value. For more details checkout [this paper](https://arxiv.org/pdf/2412.11834).

        is_moe (`bool`, *optional*, defaults to `False`):

            Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize. For more details checkout [this paper](https://arxiv.org/pdf/2412.11834).

        num_cdmoe_experts (`int`, *optional*, defaults to 16348):

            Number of Experts for the Cross Domain Mixture of Experts.

        num_cdmoe_heads (`int`, *optional*, defaults to 4):

            Number of retrieval heads, used to mix multi-head experts.

        num_cdmoe_experts_per_head (`int`, *optional*, defaults to 8):

            Number of Experts per retrieval head, used to mix multi-head experts.

        expert_retrieval_size (`int`, *optional*, defaults to 64):

            Dimension of the Expert retrieval states for calculating the dot product of query and key to determine the expert index.



    ```python

    >>> from transformers import DogeConfig, DogeModel



    >>> # Initializing a Doge-320M style configuration

    >>> configuration = DogeConfig()



    >>> # Initializing a model from the Doge-320M style configuration

    >>> model = DogeModel(configuration)



    >>> # Accessing the model configuration

    >>> configuration = model.config

    ```"""

    model_type = "doge"
    keys_to_ignore_at_inference = ["past_key_values"]
    # Default tensor parallel plan for base model `DogeModel`
    base_model_tp_plan = {
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.dt_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.gate_proj": "colwise",
        "layers.*.mlp.up_proj": "colwise",
        "layers.*.mlp.down_proj": "rowwise",
    }

    def __init__(

        self,

        vocab_size=32768,

        hidden_size=1024,

        intermediate_size=2048,

        num_hidden_layers=32,

        hidden_bias=False,

        hidden_dropout=0.0,

        hidden_act="silu",

        initializer_range=0.02,

        rms_norm_eps=1e-06,

        use_cache=True,

        bos_token_id=0,

        eos_token_id=1,

        pad_token_id=2,

        tie_word_embeddings=False,

        max_position_embeddings=2048,

        rope_theta=10000.0,

        rope_scaling=None,

        num_attention_heads=8,

        num_key_value_heads=None,

        attention_dropout=0.0,

        dynamic_mask_ratio=0.0,

        is_moe=False,

        num_cdmoe_experts=16348,

        num_cdmoe_heads=4,

        num_cdmoe_experts_per_head=8,

        expert_retrieval_size=64,

        **kwargs,

    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers

        self.hidden_bias = hidden_bias
        self.hidden_dropout = hidden_dropout
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache

        self.max_position_embeddings = max_position_embeddings
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.attention_dropout = attention_dropout
        self.dynamic_mask_ratio = dynamic_mask_ratio
        self.is_moe = is_moe
        self.num_cdmoe_experts = num_cdmoe_experts
        self.num_cdmoe_heads = num_cdmoe_heads
        self.num_cdmoe_experts_per_head = num_cdmoe_experts_per_head
        self.expert_retrieval_size = expert_retrieval_size

        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, copy it it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)

        # for backward compatibility
        if num_key_value_heads is None:
            self.num_key_value_heads = num_attention_heads

        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            pad_token_id=pad_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


__all__ = ["DogeConfig"]