leafzs commited on
Commit
d9308d8
1 Parent(s): 6f4ef3e

[model] add prm: Skywork-o1-Open-PRM-Qwen2.5-1.5B

Browse files
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForPrmModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwen2_rm.Qwen2RMConfig",
7
+ "AutoModel": "modeling_qwen2_rm.Qwen2ForRewardModel"
8
+ },
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 151643,
11
+ "end_token_id": 151645,
12
+ "eos_token_id": 151645,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 1536,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 8960,
17
+ "max_position_embeddings": 4096,
18
+ "max_window_layers": 21,
19
+ "model_type": "qwen2",
20
+ "num_attention_heads": 12,
21
+ "num_hidden_layers": 28,
22
+ "num_key_value_heads": 2,
23
+ "pad_token_id": 151643,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_theta": 10000.0,
26
+ "sliding_window": null,
27
+ "tie_word_embeddings": true,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.44.0.dev0",
30
+ "use_cache": true,
31
+ "use_sliding_window": false,
32
+ "vocab_size": 151936
33
+ }
configuration_qwen2_rm.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Qwen2 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class Qwen2RMConfig(PretrainedConfig):
25
+ r"""
26
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
27
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
28
+ with the defaults will yield a similar configuration to that of
29
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+ Args:
33
+ vocab_size (`int`, *optional*, defaults to 151936):
34
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
35
+ `inputs_ids` passed when calling [`Qwen2Model`]
36
+ hidden_size (`int`, *optional*, defaults to 4096):
37
+ Dimension of the hidden representations.
38
+ intermediate_size (`int`, *optional*, defaults to 22016):
39
+ Dimension of the MLP representations.
40
+ num_hidden_layers (`int`, *optional*, defaults to 32):
41
+ Number of hidden layers in the Transformer encoder.
42
+ num_attention_heads (`int`, *optional*, defaults to 32):
43
+ Number of attention heads for each attention layer in the Transformer encoder.
44
+ num_key_value_heads (`int`, *optional*, defaults to 32):
45
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
46
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
47
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
48
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
49
+ by meanpooling all the original heads within that group. For more details checkout [this
50
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
51
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
52
+ The non-linear activation function (function or string) in the decoder.
53
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
54
+ The maximum sequence length that this model might ever be used with.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
58
+ The epsilon used by the rms normalization layers.
59
+ use_cache (`bool`, *optional*, defaults to `True`):
60
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
61
+ relevant if `config.is_decoder=True`.
62
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
63
+ Whether the model's input and output word embeddings should be tied.
64
+ rope_theta (`float`, *optional*, defaults to 10000.0):
65
+ The base period of the RoPE embeddings.
66
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
67
+ Whether to use sliding window attention.
68
+ sliding_window (`int`, *optional*, defaults to 4096):
69
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
70
+ max_window_layers (`int`, *optional*, defaults to 28):
71
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
72
+ attention_dropout (`float`, *optional*, defaults to 0.0):
73
+ The dropout ratio for the attention probabilities.
74
+ ```python
75
+ >>> from transformers import Qwen2Model, Qwen2Config
76
+ >>> # Initializing a Qwen2 style configuration
77
+ >>> configuration = Qwen2Config()
78
+ >>> # Initializing a model from the Qwen2-7B style configuration
79
+ >>> model = Qwen2Model(configuration)
80
+ >>> # Accessing the model configuration
81
+ >>> configuration = model.config
82
+ ```"""
83
+
84
+ model_type = "qwen2"
85
+ keys_to_ignore_at_inference = ["past_key_values"]
86
+
87
+ def __init__(
88
+ self,
89
+ vocab_size=151936,
90
+ hidden_size=4096,
91
+ intermediate_size=22016,
92
+ num_hidden_layers=32,
93
+ num_attention_heads=32,
94
+ num_key_value_heads=32,
95
+ hidden_act="silu",
96
+ max_position_embeddings=32768,
97
+ initializer_range=0.02,
98
+ rms_norm_eps=1e-6,
99
+ use_cache=True,
100
+ tie_word_embeddings=False,
101
+ rope_theta=10000.0,
102
+ use_sliding_window=False,
103
+ sliding_window=4096,
104
+ max_window_layers=28,
105
+ attention_dropout=0.0,
106
+ **kwargs,
107
+ ):
108
+ self.vocab_size = vocab_size
109
+ self.max_position_embeddings = max_position_embeddings
110
+ self.hidden_size = hidden_size
111
+ self.intermediate_size = intermediate_size
112
+ self.num_hidden_layers = num_hidden_layers
113
+ self.num_attention_heads = num_attention_heads
114
+ self.use_sliding_window = use_sliding_window
115
+ self.sliding_window = sliding_window if use_sliding_window else None
116
+ self.max_window_layers = max_window_layers
117
+
118
+ # for backward compatibility
119
+ if num_key_value_heads is None:
120
+ num_key_value_heads = num_attention_heads
121
+
122
+ self.num_key_value_heads = num_key_value_heads
123
+ self.hidden_act = hidden_act
124
+ self.initializer_range = initializer_range
125
+ self.rms_norm_eps = rms_norm_eps
126
+ self.use_cache = use_cache
127
+ self.rope_theta = rope_theta
128
+ self.attention_dropout = attention_dropout
129
+
130
+ super().__init__(
131
+ tie_word_embeddings=tie_word_embeddings,
132
+ **kwargs,
133
+ )
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_qwen2_rm.py ADDED
@@ -0,0 +1,1557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch Qwen2 model."""
21
+
22
+ import math
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.cache_utils import Cache, DynamicCache#, StaticCache
32
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPast,
35
+ CausalLMOutputWithPast,
36
+ SequenceClassifierOutputWithPast,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_utils import PreTrainedModel
40
+ from transformers.utils import (
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_2_available,
44
+ is_flash_attn_greater_or_equal_2_10,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from .configuration_qwen2_rm import Qwen2RMConfig as Qwen2Config
49
+
50
+
51
+ if is_flash_attn_2_available():
52
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
53
+
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+
58
+ _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
59
+ _CONFIG_FOR_DOC = "Qwen2Config"
60
+
61
+
62
+ # Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
63
+ def _prepare_4d_causal_attention_mask_with_cache_position(
64
+ attention_mask: torch.Tensor,
65
+ sequence_length: int,
66
+ target_length: int,
67
+ dtype: torch.dtype,
68
+ device: torch.device,
69
+ min_dtype: float,
70
+ cache_position: torch.Tensor,
71
+ batch_size: int,
72
+ ):
73
+ """
74
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
75
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
76
+ Args:
77
+ attention_mask (`torch.Tensor`):
78
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
79
+ sequence_length (`int`):
80
+ The sequence length being processed.
81
+ target_length (`int`):
82
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
83
+ dtype (`torch.dtype`):
84
+ The dtype to use for the 4D attention mask.
85
+ device (`torch.device`):
86
+ The device to plcae the 4D attention mask on.
87
+ min_dtype (`float`):
88
+ The minimum value representable with the dtype `dtype`.
89
+ cache_position (`torch.Tensor`):
90
+ Indices depicting the position of the input sequence tokens in the sequence.
91
+ batch_size (`torch.Tensor`):
92
+ Batch size.
93
+ """
94
+ if attention_mask is not None and attention_mask.dim() == 4:
95
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
96
+ causal_mask = attention_mask
97
+ else:
98
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
99
+ if sequence_length != 1:
100
+ causal_mask = torch.triu(causal_mask, diagonal=1)
101
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
102
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
103
+ if attention_mask is not None:
104
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
105
+ mask_length = attention_mask.shape[-1]
106
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
107
+ padding_mask = padding_mask == 0
108
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
109
+ padding_mask, min_dtype
110
+ )
111
+
112
+ return causal_mask
113
+
114
+
115
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
116
+ class Qwen2RMSNorm(nn.Module):
117
+ def __init__(self, hidden_size, eps=1e-6):
118
+ """
119
+ Qwen2RMSNorm is equivalent to T5LayerNorm
120
+ """
121
+ super().__init__()
122
+ self.weight = nn.Parameter(torch.ones(hidden_size))
123
+ self.variance_epsilon = eps
124
+
125
+ def forward(self, hidden_states):
126
+ input_dtype = hidden_states.dtype
127
+ hidden_states = hidden_states.to(torch.float32)
128
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
129
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
130
+ return self.weight * hidden_states.to(input_dtype)
131
+
132
+ def extra_repr(self):
133
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
134
+
135
+
136
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
137
+ class Qwen2RotaryEmbedding(nn.Module):
138
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
139
+ super().__init__()
140
+
141
+ self.dim = dim
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.base = base
144
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
145
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
146
+
147
+ # Build here to make `torch.jit.trace` work.
148
+ self._set_cos_sin_cache(
149
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
150
+ )
151
+
152
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
153
+ self.max_seq_len_cached = seq_len
154
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
155
+
156
+ freqs = torch.outer(t, self.inv_freq)
157
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
158
+ emb = torch.cat((freqs, freqs), dim=-1)
159
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
160
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
161
+
162
+ def forward(self, x, seq_len=None):
163
+ # x: [bs, num_attention_heads, seq_len, head_size]
164
+ if seq_len > self.max_seq_len_cached:
165
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
166
+
167
+ return (
168
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
169
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
170
+ )
171
+
172
+
173
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
174
+ def rotate_half(x):
175
+ """Rotates half the hidden dims of the input."""
176
+ x1 = x[..., : x.shape[-1] // 2]
177
+ x2 = x[..., x.shape[-1] // 2 :]
178
+ return torch.cat((-x2, x1), dim=-1)
179
+
180
+
181
+ # Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb
182
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
183
+ """Applies Rotary Position Embedding to the query and key tensors.
184
+ Args:
185
+ q (`torch.Tensor`): The query tensor.
186
+ k (`torch.Tensor`): The key tensor.
187
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
188
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
189
+ position_ids (`torch.Tensor`):
190
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
191
+ used to pass offsetted position ids when working with a KV-cache.
192
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
193
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
194
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
195
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
196
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
197
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
198
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
199
+ Returns:
200
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
201
+ """
202
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
203
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
204
+ q_embed = (q * cos) + (rotate_half(q) * sin)
205
+ k_embed = (k * cos) + (rotate_half(k) * sin)
206
+ return q_embed, k_embed
207
+
208
+
209
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
210
+ class Qwen2MLP(nn.Module):
211
+ def __init__(self, config):
212
+ super().__init__()
213
+ self.hidden_size = config.hidden_size
214
+ self.intermediate_size = config.intermediate_size
215
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
216
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
217
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
218
+ self.act_fn = ACT2FN[config.hidden_act]
219
+
220
+ def forward(self, hidden_state):
221
+ return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
222
+
223
+
224
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
225
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
226
+ """
227
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
228
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
229
+ """
230
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
231
+ if n_rep == 1:
232
+ return hidden_states
233
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
234
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
235
+
236
+
237
+ class Qwen2Attention(nn.Module):
238
+ """
239
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
240
+ and "Generating Long Sequences with Sparse Transformers".
241
+ """
242
+
243
+ def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
244
+ super().__init__()
245
+ self.config = config
246
+ self.layer_idx = layer_idx
247
+ if layer_idx is None:
248
+ logger.warning_once(
249
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
250
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
251
+ "when creating this class."
252
+ )
253
+
254
+ self.hidden_size = config.hidden_size
255
+ self.num_heads = config.num_attention_heads
256
+ self.head_dim = self.hidden_size // self.num_heads
257
+ self.num_key_value_heads = config.num_key_value_heads
258
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
259
+ self.max_position_embeddings = config.max_position_embeddings
260
+ self.rope_theta = config.rope_theta
261
+ self.is_causal = True
262
+ self.attention_dropout = config.attention_dropout
263
+
264
+ if (self.head_dim * self.num_heads) != self.hidden_size:
265
+ raise ValueError(
266
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
267
+ f" and `num_heads`: {self.num_heads})."
268
+ )
269
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
270
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
271
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
272
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
273
+
274
+ self.rotary_emb = Qwen2RotaryEmbedding(
275
+ self.head_dim,
276
+ max_position_embeddings=self.max_position_embeddings,
277
+ base=self.rope_theta,
278
+ )
279
+
280
+ def forward(
281
+ self,
282
+ hidden_states: torch.Tensor,
283
+ attention_mask: Optional[torch.Tensor] = None,
284
+ position_ids: Optional[torch.LongTensor] = None,
285
+ past_key_value: Optional[Cache] = None,
286
+ output_attentions: bool = False,
287
+ use_cache: bool = False,
288
+ cache_position: Optional[torch.LongTensor] = None,
289
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
290
+ bsz, q_len, _ = hidden_states.size()
291
+
292
+ query_states = self.q_proj(hidden_states)
293
+ key_states = self.k_proj(hidden_states)
294
+ value_states = self.v_proj(hidden_states)
295
+
296
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
297
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
298
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
299
+
300
+ kv_seq_len = key_states.shape[-2]
301
+ if past_key_value is not None:
302
+ if self.layer_idx is None:
303
+ raise ValueError(
304
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
305
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
306
+ "with a layer index."
307
+ )
308
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
309
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
310
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
311
+
312
+ if past_key_value is not None:
313
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
314
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
315
+
316
+ # repeat k/v heads if n_kv_heads < n_heads
317
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
318
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
319
+
320
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
321
+
322
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
323
+ raise ValueError(
324
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
325
+ f" {attn_weights.size()}"
326
+ )
327
+
328
+ if attention_mask is not None: # no matter the length, we just slice it
329
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
330
+ attn_weights = attn_weights + causal_mask
331
+
332
+ # upcast attention to fp32
333
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
334
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
335
+ attn_output = torch.matmul(attn_weights, value_states)
336
+
337
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
338
+ raise ValueError(
339
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
340
+ f" {attn_output.size()}"
341
+ )
342
+
343
+ attn_output = attn_output.transpose(1, 2).contiguous()
344
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
345
+
346
+ attn_output = self.o_proj(attn_output)
347
+
348
+ if not output_attentions:
349
+ attn_weights = None
350
+
351
+ return attn_output, attn_weights, past_key_value
352
+
353
+
354
+ class Qwen2FlashAttention2(Qwen2Attention):
355
+ """
356
+ Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
357
+ as the weights of the module stays untouched. The only required change would be on the forward pass
358
+ where it needs to correctly call the public API of flash attention and deal with padding tokens
359
+ in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
360
+ config.max_window_layers layers.
361
+ """
362
+
363
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
364
+ def __init__(self, *args, **kwargs):
365
+ super().__init__(*args, **kwargs)
366
+
367
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
368
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
369
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
370
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
371
+
372
+ def forward(
373
+ self,
374
+ hidden_states: torch.Tensor,
375
+ attention_mask: Optional[torch.Tensor] = None,
376
+ position_ids: Optional[torch.LongTensor] = None,
377
+ past_key_value: Optional[Cache] = None,
378
+ output_attentions: bool = False,
379
+ use_cache: bool = False,
380
+ cache_position: Optional[torch.LongTensor] = None,
381
+ ):
382
+ bsz, q_len, _ = hidden_states.size()
383
+
384
+ query_states = self.q_proj(hidden_states)
385
+ key_states = self.k_proj(hidden_states)
386
+ value_states = self.v_proj(hidden_states)
387
+
388
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
389
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
390
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
391
+
392
+ kv_seq_len = key_states.shape[-2]
393
+ if past_key_value is not None:
394
+ if self.layer_idx is None:
395
+ raise ValueError(
396
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
397
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
398
+ "with a layer index."
399
+ )
400
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
401
+
402
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
403
+ rotary_seq_len = (
404
+ max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len
405
+ )
406
+
407
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
408
+
409
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
410
+
411
+ if past_key_value is not None:
412
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
413
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
414
+ if (
415
+ getattr(self.config, "sliding_window", None) is not None
416
+ and kv_seq_len > self.config.sliding_window
417
+ and cache_has_contents
418
+ ):
419
+ slicing_tokens = 1 - self.config.sliding_window
420
+
421
+ past_key = past_key_value[self.layer_idx][0]
422
+ past_value = past_key_value[self.layer_idx][1]
423
+
424
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
425
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
426
+
427
+ if past_key.shape[-2] != self.config.sliding_window - 1:
428
+ raise ValueError(
429
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
430
+ f" {past_key.shape}"
431
+ )
432
+
433
+ if attention_mask is not None:
434
+ attention_mask = attention_mask[:, slicing_tokens:]
435
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
436
+
437
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
438
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
439
+
440
+ # repeat k/v heads if n_kv_heads < n_heads
441
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
442
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
443
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
444
+
445
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
446
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
447
+ # cast them back in float16 just to be sure everything works as expected.
448
+ input_dtype = query_states.dtype
449
+ if input_dtype == torch.float32:
450
+ if torch.is_autocast_enabled():
451
+ target_dtype = torch.get_autocast_gpu_dtype()
452
+ # Handle the case where the model is quantized
453
+ elif hasattr(self.config, "_pre_quantization_dtype"):
454
+ target_dtype = self.config._pre_quantization_dtype
455
+ else:
456
+ target_dtype = self.q_proj.weight.dtype
457
+
458
+ logger.warning_once(
459
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
460
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
461
+ f" {target_dtype}."
462
+ )
463
+
464
+ query_states = query_states.to(target_dtype)
465
+ key_states = key_states.to(target_dtype)
466
+ value_states = value_states.to(target_dtype)
467
+
468
+ # Reashape to the expected shape for Flash Attention
469
+ query_states = query_states.transpose(1, 2)
470
+ key_states = key_states.transpose(1, 2)
471
+ value_states = value_states.transpose(1, 2)
472
+
473
+ if (
474
+ self.config.use_sliding_window
475
+ and getattr(self.config, "sliding_window", None) is not None
476
+ and self.layer_idx >= self.config.max_window_layers
477
+ ):
478
+ sliding_window = self.config.sliding_window
479
+ else:
480
+ sliding_window = None
481
+
482
+ attn_output = _flash_attention_forward(
483
+ query_states,
484
+ key_states,
485
+ value_states,
486
+ attention_mask,
487
+ q_len,
488
+ position_ids=position_ids,
489
+ dropout=dropout_rate,
490
+ sliding_window=sliding_window,
491
+ is_causal=self.is_causal,
492
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
493
+ )
494
+
495
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
496
+ attn_output = self.o_proj(attn_output)
497
+
498
+ if not output_attentions:
499
+ attn_weights = None
500
+
501
+ return attn_output, attn_weights, past_key_value
502
+
503
+
504
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralSdpaAttention with Mixtral->Qwen2
505
+ class Qwen2SdpaAttention(Qwen2Attention):
506
+ """
507
+ Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
508
+ `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
509
+ SDPA API.
510
+ """
511
+
512
+ # Adapted from Qwen2Attention.forward
513
+ def forward(
514
+ self,
515
+ hidden_states: torch.Tensor,
516
+ attention_mask: Optional[torch.Tensor] = None,
517
+ position_ids: Optional[torch.LongTensor] = None,
518
+ past_key_value: Optional[Cache] = None,
519
+ output_attentions: bool = False,
520
+ use_cache: bool = False,
521
+ cache_position: Optional[torch.LongTensor] = None,
522
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
523
+ if output_attentions:
524
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
525
+ logger.warning_once(
526
+ "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
527
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
528
+ )
529
+ return super().forward(
530
+ hidden_states=hidden_states,
531
+ attention_mask=attention_mask,
532
+ position_ids=position_ids,
533
+ past_key_value=past_key_value,
534
+ output_attentions=output_attentions,
535
+ use_cache=use_cache,
536
+ )
537
+
538
+ bsz, q_len, _ = hidden_states.size()
539
+
540
+ query_states = self.q_proj(hidden_states)
541
+ key_states = self.k_proj(hidden_states)
542
+ value_states = self.v_proj(hidden_states)
543
+
544
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
545
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
546
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
547
+
548
+ kv_seq_len = key_states.shape[-2]
549
+ if past_key_value is not None:
550
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
551
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
552
+
553
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
554
+
555
+ if past_key_value is not None:
556
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
557
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
558
+
559
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
560
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
561
+
562
+ causal_mask = attention_mask
563
+ if attention_mask is not None: # no matter the length, we just slice it
564
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
565
+
566
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
567
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
568
+ if query_states.device.type == "cuda" and attention_mask is not None:
569
+ query_states = query_states.contiguous()
570
+ key_states = key_states.contiguous()
571
+ value_states = value_states.contiguous()
572
+
573
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
574
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
575
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
576
+ is_causal = True if causal_mask is None and q_len > 1 else False
577
+
578
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
579
+ query_states,
580
+ key_states,
581
+ value_states,
582
+ attn_mask=causal_mask,
583
+ dropout_p=self.attention_dropout if self.training else 0.0,
584
+ is_causal=is_causal,
585
+ )
586
+
587
+ attn_output = attn_output.transpose(1, 2).contiguous()
588
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
589
+
590
+ attn_output = self.o_proj(attn_output)
591
+
592
+ return attn_output, None, past_key_value
593
+
594
+
595
+ QWEN2_ATTENTION_CLASSES = {
596
+ "eager": Qwen2Attention,
597
+ "flash_attention_2": Qwen2FlashAttention2,
598
+ "sdpa": Qwen2SdpaAttention,
599
+ }
600
+
601
+
602
+ class Qwen2DecoderLayer(nn.Module):
603
+ def __init__(self, config: Qwen2Config, layer_idx: int):
604
+ super().__init__()
605
+ self.hidden_size = config.hidden_size
606
+
607
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
608
+ logger.warning_once(
609
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
610
+ "unexpected results may be encountered."
611
+ )
612
+ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
613
+
614
+ self.mlp = Qwen2MLP(config)
615
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
616
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
617
+
618
+ def forward(
619
+ self,
620
+ hidden_states: torch.Tensor,
621
+ attention_mask: Optional[torch.Tensor] = None,
622
+ position_ids: Optional[torch.LongTensor] = None,
623
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
624
+ output_attentions: Optional[bool] = False,
625
+ use_cache: Optional[bool] = False,
626
+ cache_position: Optional[torch.LongTensor] = None,
627
+ **kwargs,
628
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
629
+ """
630
+ Args:
631
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
632
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
633
+ `(batch, sequence_length)` where padding elements are indicated by 0.
634
+ output_attentions (`bool`, *optional*):
635
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
636
+ returned tensors for more detail.
637
+ use_cache (`bool`, *optional*):
638
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
639
+ (see `past_key_values`).
640
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
641
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
642
+ Indices depicting the position of the input sequence tokens in the sequence.
643
+ kwargs (`dict`, *optional*):
644
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
645
+ into the model
646
+ """
647
+
648
+ residual = hidden_states
649
+
650
+ hidden_states = self.input_layernorm(hidden_states)
651
+
652
+ # Self Attention
653
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
654
+ hidden_states=hidden_states,
655
+ attention_mask=attention_mask,
656
+ position_ids=position_ids,
657
+ past_key_value=past_key_value,
658
+ output_attentions=output_attentions,
659
+ use_cache=use_cache,
660
+ cache_position=cache_position,
661
+ )
662
+ hidden_states = residual + hidden_states
663
+
664
+ # Fully Connected
665
+ residual = hidden_states
666
+ hidden_states = self.post_attention_layernorm(hidden_states)
667
+ hidden_states = self.mlp(hidden_states)
668
+ hidden_states = residual + hidden_states
669
+
670
+ outputs = (hidden_states,)
671
+
672
+ if output_attentions:
673
+ outputs += (self_attn_weights,)
674
+
675
+ if use_cache:
676
+ outputs += (present_key_value,)
677
+
678
+ return outputs
679
+
680
+
681
+ QWEN2_START_DOCSTRING = r"""
682
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
683
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
684
+ etc.)
685
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
686
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
687
+ and behavior.
688
+ Parameters:
689
+ config ([`Qwen2Config`]):
690
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
691
+ load the weights associated with the model, only the configuration. Check out the
692
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
693
+ """
694
+
695
+
696
+ @add_start_docstrings(
697
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
698
+ QWEN2_START_DOCSTRING,
699
+ )
700
+ class Qwen2PreTrainedModel(PreTrainedModel):
701
+ config_class = Qwen2Config
702
+ base_model_prefix = "model"
703
+ supports_gradient_checkpointing = True
704
+ _no_split_modules = ["Qwen2DecoderLayer"]
705
+ _skip_keys_device_placement = "past_key_values"
706
+ _supports_flash_attn_2 = True
707
+ _supports_sdpa = True
708
+ _supports_cache_class = True
709
+
710
+ def _init_weights(self, module):
711
+ std = self.config.initializer_range
712
+ if isinstance(module, nn.Linear):
713
+ module.weight.data.normal_(mean=0.0, std=std)
714
+ if module.bias is not None:
715
+ module.bias.data.zero_()
716
+ elif isinstance(module, nn.Embedding):
717
+ module.weight.data.normal_(mean=0.0, std=std)
718
+ if module.padding_idx is not None:
719
+ module.weight.data[module.padding_idx].zero_()
720
+
721
+
722
+ QWEN2_INPUTS_DOCSTRING = r"""
723
+ Args:
724
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
725
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
726
+ it.
727
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
728
+ [`PreTrainedTokenizer.__call__`] for details.
729
+ [What are input IDs?](../glossary#input-ids)
730
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
731
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
732
+ - 1 for tokens that are **not masked**,
733
+ - 0 for tokens that are **masked**.
734
+ [What are attention masks?](../glossary#attention-mask)
735
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
736
+ [`PreTrainedTokenizer.__call__`] for details.
737
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
738
+ `past_key_values`).
739
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
740
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
741
+ information on the default strategy.
742
+ - 1 indicates the head is **not masked**,
743
+ - 0 indicates the head is **masked**.
744
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
745
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
746
+ config.n_positions - 1]`.
747
+ [What are position IDs?](../glossary#position-ids)
748
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
749
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
750
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
751
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
752
+ Two formats are allowed:
753
+ - a [`~cache_utils.Cache`] instance;
754
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
755
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
756
+ cache format.
757
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
758
+ legacy cache format will be returned.
759
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
760
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
761
+ of shape `(batch_size, sequence_length)`.
762
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
763
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
764
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
765
+ model's internal embedding lookup matrix.
766
+ use_cache (`bool`, *optional*):
767
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
768
+ `past_key_values`).
769
+ output_attentions (`bool`, *optional*):
770
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
771
+ tensors for more detail.
772
+ output_hidden_states (`bool`, *optional*):
773
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
774
+ more detail.
775
+ return_dict (`bool`, *optional*):
776
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
777
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
778
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
779
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
780
+ the complete sequence length.
781
+ """
782
+
783
+
784
+ @add_start_docstrings(
785
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
786
+ QWEN2_START_DOCSTRING,
787
+ )
788
+ class Qwen2Model(Qwen2PreTrainedModel):
789
+ """
790
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
791
+ Args:
792
+ config: Qwen2Config
793
+ """
794
+
795
+ def __init__(self, config: Qwen2Config):
796
+ super().__init__(config)
797
+ self.padding_idx = config.pad_token_id
798
+ self.vocab_size = config.vocab_size
799
+
800
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
801
+ self.layers = nn.ModuleList(
802
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
803
+ )
804
+ self._attn_implementation = config._attn_implementation
805
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
806
+
807
+ self.gradient_checkpointing = False
808
+ # Initialize weights and apply final processing
809
+ self.post_init()
810
+
811
+ def get_input_embeddings(self):
812
+ return self.embed_tokens
813
+
814
+ def set_input_embeddings(self, value):
815
+ self.embed_tokens = value
816
+
817
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
818
+ def forward(
819
+ self,
820
+ input_ids: torch.LongTensor = None,
821
+ attention_mask: Optional[torch.Tensor] = None,
822
+ position_ids: Optional[torch.LongTensor] = None,
823
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
824
+ inputs_embeds: Optional[torch.FloatTensor] = None,
825
+ use_cache: Optional[bool] = None,
826
+ output_attentions: Optional[bool] = None,
827
+ output_hidden_states: Optional[bool] = None,
828
+ return_dict: Optional[bool] = None,
829
+ cache_position: Optional[torch.LongTensor] = None,
830
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
831
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
832
+ output_hidden_states = (
833
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
834
+ )
835
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
836
+
837
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
838
+
839
+ if (input_ids is None) ^ (inputs_embeds is not None):
840
+ raise ValueError(
841
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
842
+ )
843
+
844
+ if self.gradient_checkpointing and self.training:
845
+ if use_cache:
846
+ logger.warning_once(
847
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
848
+ )
849
+ use_cache = False
850
+
851
+ use_legacy_cache = False
852
+ if use_cache and not isinstance(past_key_values, Cache) and not self.training:
853
+ use_legacy_cache = True
854
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
855
+ logger.warning_once(
856
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
857
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
858
+ )
859
+
860
+ if inputs_embeds is None:
861
+ inputs_embeds = self.embed_tokens(input_ids)
862
+
863
+ if cache_position is None:
864
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
865
+ cache_position = torch.arange(
866
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
867
+ )
868
+ if position_ids is None:
869
+ position_ids = cache_position.unsqueeze(0)
870
+
871
+ causal_mask = self._update_causal_mask(
872
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
873
+ )
874
+
875
+ hidden_states = inputs_embeds
876
+
877
+ # decoder layers
878
+ all_hidden_states = () if output_hidden_states else None
879
+ all_self_attns = () if output_attentions else None
880
+ next_decoder_cache = None
881
+
882
+ for decoder_layer in self.layers:
883
+ if output_hidden_states:
884
+ all_hidden_states += (hidden_states,)
885
+
886
+ if self.gradient_checkpointing and self.training:
887
+ layer_outputs = self._gradient_checkpointing_func(
888
+ decoder_layer.__call__,
889
+ hidden_states,
890
+ causal_mask,
891
+ position_ids,
892
+ past_key_values,
893
+ output_attentions,
894
+ use_cache,
895
+ cache_position,
896
+ )
897
+ else:
898
+ layer_outputs = decoder_layer(
899
+ hidden_states,
900
+ attention_mask=causal_mask,
901
+ position_ids=position_ids,
902
+ past_key_value=past_key_values,
903
+ output_attentions=output_attentions,
904
+ use_cache=use_cache,
905
+ cache_position=cache_position,
906
+ )
907
+
908
+ hidden_states = layer_outputs[0]
909
+
910
+ if use_cache:
911
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
912
+
913
+ if output_attentions:
914
+ all_self_attns += (layer_outputs[1],)
915
+
916
+ hidden_states = self.norm(hidden_states)
917
+
918
+ # add hidden states from the last decoder layer
919
+ if output_hidden_states:
920
+ all_hidden_states += (hidden_states,)
921
+
922
+ next_cache = None
923
+ if use_cache:
924
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
925
+
926
+ if not return_dict:
927
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
928
+ return BaseModelOutputWithPast(
929
+ last_hidden_state=hidden_states,
930
+ past_key_values=next_cache,
931
+ hidden_states=all_hidden_states,
932
+ attentions=all_self_attns,
933
+ )
934
+
935
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
936
+ def _update_causal_mask(
937
+ self,
938
+ attention_mask: torch.Tensor,
939
+ input_tensor: torch.Tensor,
940
+ cache_position: torch.Tensor,
941
+ past_key_values: Cache,
942
+ output_attentions: bool,
943
+ ):
944
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
945
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
946
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
947
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
948
+
949
+ if self.config._attn_implementation == "flash_attention_2":
950
+ if attention_mask is not None and 0.0 in attention_mask:
951
+ return attention_mask
952
+ return None
953
+
954
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
955
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
956
+ # to infer the attention mask.
957
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
958
+ using_static_cache = False#isinstance(past_key_values, StaticCache)
959
+
960
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
961
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
962
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
963
+ attention_mask,
964
+ inputs_embeds=input_tensor,
965
+ past_key_values_length=past_seen_tokens,
966
+ is_training=self.training,
967
+ ):
968
+ return None
969
+
970
+ dtype, device = input_tensor.dtype, input_tensor.device
971
+ min_dtype = torch.finfo(dtype).min
972
+ sequence_length = input_tensor.shape[1]
973
+ if using_static_cache:
974
+ target_length = past_key_values.get_max_length()
975
+ else:
976
+ target_length = (
977
+ attention_mask.shape[-1]
978
+ if isinstance(attention_mask, torch.Tensor)
979
+ else past_seen_tokens + sequence_length + 1
980
+ )
981
+
982
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
983
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
984
+ attention_mask,
985
+ sequence_length=sequence_length,
986
+ target_length=target_length,
987
+ dtype=dtype,
988
+ device=device,
989
+ min_dtype=min_dtype,
990
+ cache_position=cache_position,
991
+ batch_size=input_tensor.shape[0],
992
+ )
993
+
994
+ if (
995
+ self.config._attn_implementation == "sdpa"
996
+ and attention_mask is not None
997
+ and attention_mask.device.type == "cuda"
998
+ and not output_attentions
999
+ ):
1000
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1001
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1002
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1003
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1004
+
1005
+ return causal_mask
1006
+
1007
+
1008
+ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
1009
+ _tied_weights_keys = ["lm_head.weight"]
1010
+
1011
+ def __init__(self, config):
1012
+ super().__init__(config)
1013
+ self.model = Qwen2Model(config)
1014
+ self.vocab_size = config.vocab_size
1015
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1016
+
1017
+ # Initialize weights and apply final processing
1018
+ self.post_init()
1019
+
1020
+ def get_input_embeddings(self):
1021
+ return self.model.embed_tokens
1022
+
1023
+ def set_input_embeddings(self, value):
1024
+ self.model.embed_tokens = value
1025
+
1026
+ def get_output_embeddings(self):
1027
+ return self.lm_head
1028
+
1029
+ def set_output_embeddings(self, new_embeddings):
1030
+ self.lm_head = new_embeddings
1031
+
1032
+ def set_decoder(self, decoder):
1033
+ self.model = decoder
1034
+
1035
+ def get_decoder(self):
1036
+ return self.model
1037
+
1038
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1039
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1040
+ def forward(
1041
+ self,
1042
+ input_ids: torch.LongTensor = None,
1043
+ attention_mask: Optional[torch.Tensor] = None,
1044
+ position_ids: Optional[torch.LongTensor] = None,
1045
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1046
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1047
+ labels: Optional[torch.LongTensor] = None,
1048
+ use_cache: Optional[bool] = None,
1049
+ output_attentions: Optional[bool] = None,
1050
+ output_hidden_states: Optional[bool] = None,
1051
+ return_dict: Optional[bool] = None,
1052
+ cache_position: Optional[torch.LongTensor] = None,
1053
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1054
+ r"""
1055
+ Args:
1056
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1057
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1058
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1059
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1060
+ Returns:
1061
+ Example:
1062
+ ```python
1063
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
1064
+ >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1065
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1066
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1067
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1068
+ >>> # Generate
1069
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1070
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1071
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1072
+ ```"""
1073
+
1074
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1075
+ output_hidden_states = (
1076
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1077
+ )
1078
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1079
+
1080
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1081
+ outputs = self.model(
1082
+ input_ids=input_ids,
1083
+ attention_mask=attention_mask,
1084
+ position_ids=position_ids,
1085
+ past_key_values=past_key_values,
1086
+ inputs_embeds=inputs_embeds,
1087
+ use_cache=use_cache,
1088
+ output_attentions=output_attentions,
1089
+ output_hidden_states=output_hidden_states,
1090
+ return_dict=return_dict,
1091
+ cache_position=cache_position,
1092
+ )
1093
+
1094
+ hidden_states = outputs[0]
1095
+ logits = self.lm_head(hidden_states)
1096
+ logits = logits.float()
1097
+
1098
+ loss = None
1099
+ if labels is not None:
1100
+ # Shift so that tokens < n predict n
1101
+ shift_logits = logits[..., :-1, :].contiguous()
1102
+ shift_labels = labels[..., 1:].contiguous()
1103
+ # Flatten the tokens
1104
+ loss_fct = CrossEntropyLoss()
1105
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1106
+ shift_labels = shift_labels.view(-1)
1107
+ # Enable model parallelism
1108
+ shift_labels = shift_labels.to(shift_logits.device)
1109
+ loss = loss_fct(shift_logits, shift_labels)
1110
+
1111
+ if not return_dict:
1112
+ output = (logits,) + outputs[1:]
1113
+ return (loss,) + output if loss is not None else output
1114
+
1115
+ return CausalLMOutputWithPast(
1116
+ loss=loss,
1117
+ logits=logits,
1118
+ past_key_values=outputs.past_key_values,
1119
+ hidden_states=outputs.hidden_states,
1120
+ attentions=outputs.attentions,
1121
+ )
1122
+
1123
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
1124
+ def prepare_inputs_for_generation(
1125
+ self,
1126
+ input_ids,
1127
+ past_key_values=None,
1128
+ attention_mask=None,
1129
+ inputs_embeds=None,
1130
+ cache_position=None,
1131
+ position_ids=None,
1132
+ use_cache=True,
1133
+ **kwargs,
1134
+ ):
1135
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1136
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1137
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1138
+ if past_key_values is not None:
1139
+ if inputs_embeds is not None: # Exception 1
1140
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1141
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1142
+ input_ids = input_ids[:, cache_position]
1143
+
1144
+ if attention_mask is not None and position_ids is None:
1145
+ # create position_ids on the fly for batch generation
1146
+ position_ids = attention_mask.long().cumsum(-1) - 1
1147
+ position_ids.masked_fill_(attention_mask == 0, 1)
1148
+ if past_key_values:
1149
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1150
+
1151
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1152
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1153
+
1154
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1155
+ if inputs_embeds is not None and cache_position[0] == 0:
1156
+ model_inputs = {"inputs_embeds": inputs_embeds}
1157
+ else:
1158
+ model_inputs = {"input_ids": input_ids}
1159
+
1160
+ if False and isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1161
+ if inputs_embeds is not None:
1162
+ batch_size, sequence_length = inputs_embeds.shape
1163
+ device = inputs_embeds.device
1164
+ else:
1165
+ batch_size, sequence_length = input_ids.shape
1166
+ device = input_ids.device
1167
+
1168
+ dtype = self.lm_head.weight.dtype
1169
+ min_dtype = torch.finfo(dtype).min
1170
+
1171
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1172
+ attention_mask,
1173
+ sequence_length=sequence_length,
1174
+ target_length=past_key_values.get_max_length(),
1175
+ dtype=dtype,
1176
+ device=device,
1177
+ min_dtype=min_dtype,
1178
+ cache_position=cache_position,
1179
+ batch_size=batch_size,
1180
+ )
1181
+
1182
+ model_inputs.update(
1183
+ {
1184
+ "position_ids": position_ids,
1185
+ "cache_position": cache_position,
1186
+ "past_key_values": past_key_values,
1187
+ "use_cache": use_cache,
1188
+ "attention_mask": attention_mask,
1189
+ }
1190
+ )
1191
+ return model_inputs
1192
+
1193
+
1194
+ @add_start_docstrings(
1195
+ """
1196
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
1197
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1198
+ (e.g. GPT-2) do.
1199
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1200
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1201
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1202
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1203
+ each row of the batch).
1204
+ """,
1205
+ QWEN2_START_DOCSTRING,
1206
+ )
1207
+ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
1208
+ def __init__(self, config):
1209
+ super().__init__(config)
1210
+ self.num_labels = config.num_labels
1211
+ self.model = Qwen2Model(config)
1212
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1213
+
1214
+ # Initialize weights and apply final processing
1215
+ self.post_init()
1216
+
1217
+ def get_input_embeddings(self):
1218
+ return self.model.embed_tokens
1219
+
1220
+ def set_input_embeddings(self, value):
1221
+ self.model.embed_tokens = value
1222
+
1223
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1224
+ def forward(
1225
+ self,
1226
+ input_ids: torch.LongTensor = None,
1227
+ attention_mask: Optional[torch.Tensor] = None,
1228
+ position_ids: Optional[torch.LongTensor] = None,
1229
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1230
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1231
+ labels: Optional[torch.LongTensor] = None,
1232
+ use_cache: Optional[bool] = None,
1233
+ output_attentions: Optional[bool] = None,
1234
+ output_hidden_states: Optional[bool] = None,
1235
+ return_dict: Optional[bool] = None,
1236
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1237
+ r"""
1238
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1239
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1240
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1241
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1242
+ """
1243
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1244
+
1245
+ transformer_outputs = self.model(
1246
+ input_ids,
1247
+ attention_mask=attention_mask,
1248
+ position_ids=position_ids,
1249
+ past_key_values=past_key_values,
1250
+ inputs_embeds=inputs_embeds,
1251
+ use_cache=use_cache,
1252
+ output_attentions=output_attentions,
1253
+ output_hidden_states=output_hidden_states,
1254
+ return_dict=return_dict,
1255
+ )
1256
+ hidden_states = transformer_outputs[0]
1257
+ logits = self.score(hidden_states)
1258
+
1259
+ if input_ids is not None:
1260
+ batch_size = input_ids.shape[0]
1261
+ else:
1262
+ batch_size = inputs_embeds.shape[0]
1263
+
1264
+ if self.config.pad_token_id is None and batch_size != 1:
1265
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1266
+ if self.config.pad_token_id is None:
1267
+ sequence_lengths = -1
1268
+ else:
1269
+ if input_ids is not None:
1270
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1271
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1272
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1273
+ sequence_lengths = sequence_lengths.to(logits.device)
1274
+ else:
1275
+ sequence_lengths = -1
1276
+
1277
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1278
+
1279
+ loss = None
1280
+ if labels is not None:
1281
+ labels = labels.to(logits.device)
1282
+ if self.config.problem_type is None:
1283
+ if self.num_labels == 1:
1284
+ self.config.problem_type = "regression"
1285
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1286
+ self.config.problem_type = "single_label_classification"
1287
+ else:
1288
+ self.config.problem_type = "multi_label_classification"
1289
+
1290
+ if self.config.problem_type == "regression":
1291
+ loss_fct = MSELoss()
1292
+ if self.num_labels == 1:
1293
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1294
+ else:
1295
+ loss = loss_fct(pooled_logits, labels)
1296
+ elif self.config.problem_type == "single_label_classification":
1297
+ loss_fct = CrossEntropyLoss()
1298
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1299
+ elif self.config.problem_type == "multi_label_classification":
1300
+ loss_fct = BCEWithLogitsLoss()
1301
+ loss = loss_fct(pooled_logits, labels)
1302
+ if not return_dict:
1303
+ output = (pooled_logits,) + transformer_outputs[1:]
1304
+ return ((loss,) + output) if loss is not None else output
1305
+
1306
+ return SequenceClassifierOutputWithPast(
1307
+ loss=loss,
1308
+ logits=pooled_logits,
1309
+ past_key_values=transformer_outputs.past_key_values,
1310
+ hidden_states=transformer_outputs.hidden_states,
1311
+ attentions=transformer_outputs.attentions,
1312
+ )
1313
+
1314
+
1315
+ @add_start_docstrings(
1316
+ """
1317
+ The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1318
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1319
+ """,
1320
+ QWEN2_START_DOCSTRING,
1321
+ )
1322
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Qwen2, LLAMA->QWEN2
1323
+ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
1324
+ def __init__(self, config):
1325
+ super().__init__(config)
1326
+ self.num_labels = config.num_labels
1327
+ self.model = Qwen2Model(config)
1328
+ if getattr(config, "classifier_dropout", None) is not None:
1329
+ classifier_dropout = config.classifier_dropout
1330
+ elif getattr(config, "hidden_dropout", None) is not None:
1331
+ classifier_dropout = config.hidden_dropout
1332
+ else:
1333
+ classifier_dropout = 0.1
1334
+ self.dropout = nn.Dropout(classifier_dropout)
1335
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1336
+
1337
+ # Initialize weights and apply final processing
1338
+ self.post_init()
1339
+
1340
+ def get_input_embeddings(self):
1341
+ return self.model.embed_tokens
1342
+
1343
+ def set_input_embeddings(self, value):
1344
+ self.model.embed_tokens = value
1345
+
1346
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1347
+ def forward(
1348
+ self,
1349
+ input_ids: Optional[torch.LongTensor] = None,
1350
+ attention_mask: Optional[torch.Tensor] = None,
1351
+ position_ids: Optional[torch.LongTensor] = None,
1352
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1353
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1354
+ labels: Optional[torch.LongTensor] = None,
1355
+ use_cache: Optional[bool] = None,
1356
+ output_attentions: Optional[bool] = None,
1357
+ output_hidden_states: Optional[bool] = None,
1358
+ return_dict: Optional[bool] = None,
1359
+ ) -> Union[Tuple, TokenClassifierOutput]:
1360
+ r"""
1361
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1362
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1363
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1364
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1365
+ """
1366
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1367
+
1368
+ outputs = self.model(
1369
+ input_ids,
1370
+ attention_mask=attention_mask,
1371
+ position_ids=position_ids,
1372
+ past_key_values=past_key_values,
1373
+ inputs_embeds=inputs_embeds,
1374
+ use_cache=use_cache,
1375
+ output_attentions=output_attentions,
1376
+ output_hidden_states=output_hidden_states,
1377
+ return_dict=return_dict,
1378
+ )
1379
+ sequence_output = outputs[0]
1380
+ sequence_output = self.dropout(sequence_output)
1381
+ logits = self.score(sequence_output)
1382
+
1383
+ loss = None
1384
+ if labels is not None:
1385
+ loss_fct = CrossEntropyLoss()
1386
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1387
+
1388
+ if not return_dict:
1389
+ output = (logits,) + outputs[2:]
1390
+ return ((loss,) + output) if loss is not None else output
1391
+
1392
+ return TokenClassifierOutput(
1393
+ loss=loss,
1394
+ logits=logits,
1395
+ hidden_states=outputs.hidden_states,
1396
+ attentions=outputs.attentions,
1397
+ )
1398
+
1399
+
1400
+ class ValueHead(nn.Module):
1401
+ r"""
1402
+ The ValueHead class implements a head for GPT2 that returns a scalar for each output token.
1403
+ """
1404
+
1405
+ def __init__(self, config, **kwargs):
1406
+ super().__init__()
1407
+ if not hasattr(config, "summary_dropout_prob"):
1408
+ summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1)
1409
+ else:
1410
+ summary_dropout_prob = config.summary_dropout_prob
1411
+
1412
+ self.dropout = nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity()
1413
+
1414
+ # some models such as OPT have a projection layer before the word embeddings - e.g. OPT-350m
1415
+ if hasattr(config, "hidden_size"):
1416
+ hidden_size = config.hidden_size
1417
+
1418
+ self.summary = nn.Linear(hidden_size, 1)
1419
+
1420
+ self.flatten = nn.Flatten()
1421
+
1422
+ def forward(self, hidden_states):
1423
+ output = self.dropout(hidden_states)
1424
+
1425
+ # For now force upcast in fp32 if needed. Let's keep the
1426
+ # output in fp32 for numerical stability.
1427
+ if output.dtype != self.summary.weight.dtype:
1428
+ output = output.to(self.summary.weight.dtype)
1429
+
1430
+ output = self.summary(output)
1431
+ return output
1432
+
1433
+
1434
+ @add_start_docstrings(
1435
+ """
1436
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
1437
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1438
+ (e.g. GPT-2) do.
1439
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1440
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1441
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1442
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1443
+ each row of the batch).
1444
+ """,
1445
+ QWEN2_START_DOCSTRING,
1446
+ )
1447
+ class Qwen2ForRewardModel(Qwen2PreTrainedModel):
1448
+ def __init__(self, config):
1449
+ super().__init__(config)
1450
+ self.num_labels = 1#config.num_labels
1451
+ self.model = Qwen2Model(config)
1452
+ # self.score = nn.Sequential(
1453
+ # nn.Linear(config.hidden_size, config.hidden_size),
1454
+ # nn.ReLU(),
1455
+ # nn.Linear(config.hidden_size, self.num_labels)
1456
+ # )
1457
+ self.v_head = ValueHead(config)
1458
+
1459
+ # Initialize weights and apply final processing
1460
+ self.post_init()
1461
+
1462
+ def get_input_embeddings(self):
1463
+ return self.model.embed_tokens
1464
+
1465
+ def set_input_embeddings(self, value):
1466
+ self.model.embed_tokens = value
1467
+
1468
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1469
+ def forward(
1470
+ self,
1471
+ input_ids: torch.LongTensor = None,
1472
+ attention_mask: Optional[torch.Tensor] = None,
1473
+ position_ids: Optional[torch.LongTensor] = None,
1474
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1475
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1476
+ labels: Optional[torch.LongTensor] = None,
1477
+ use_cache: Optional[bool] = None,
1478
+ output_attentions: Optional[bool] = None,
1479
+ output_hidden_states: Optional[bool] = None,
1480
+ return_dict: Optional[bool] = None,
1481
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1482
+ r"""
1483
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1484
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1485
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1486
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1487
+ """
1488
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1489
+ transformer_outputs = self.model(
1490
+ input_ids,
1491
+ attention_mask=attention_mask,
1492
+ position_ids=position_ids,
1493
+ past_key_values=past_key_values,
1494
+ inputs_embeds=inputs_embeds,
1495
+ use_cache=use_cache,
1496
+ output_attentions=output_attentions,
1497
+ output_hidden_states=output_hidden_states,
1498
+ return_dict=return_dict,
1499
+ )
1500
+ hidden_states = transformer_outputs[0]
1501
+ # logits = self.score(hidden_states)
1502
+ logits = self.v_head(hidden_states).squeeze(-1)
1503
+
1504
+ if input_ids is not None:
1505
+ batch_size = input_ids.shape[0]
1506
+ else:
1507
+ batch_size = inputs_embeds.shape[0]
1508
+
1509
+ if self.config.pad_token_id is None and batch_size != 1:
1510
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1511
+ if self.config.pad_token_id is None:
1512
+ sequence_lengths = -1
1513
+ else:
1514
+ if input_ids is not None:
1515
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1516
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1517
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1518
+ sequence_lengths = sequence_lengths.to(logits.device)
1519
+ else:
1520
+ sequence_lengths = -1
1521
+
1522
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1523
+
1524
+ loss = None
1525
+ if labels is not None:
1526
+ labels = labels.to(logits.device)
1527
+ if self.config.problem_type is None:
1528
+ if self.num_labels == 1:
1529
+ self.config.problem_type = "regression"
1530
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1531
+ self.config.problem_type = "single_label_classification"
1532
+ else:
1533
+ self.config.problem_type = "multi_label_classification"
1534
+
1535
+ if self.config.problem_type == "regression":
1536
+ loss_fct = MSELoss()
1537
+ if self.num_labels == 1:
1538
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1539
+ else:
1540
+ loss = loss_fct(pooled_logits, labels)
1541
+ elif self.config.problem_type == "single_label_classification":
1542
+ loss_fct = CrossEntropyLoss()
1543
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1544
+ elif self.config.problem_type == "multi_label_classification":
1545
+ loss_fct = BCEWithLogitsLoss()
1546
+ loss = loss_fct(pooled_logits, labels)
1547
+ if not return_dict:
1548
+ output = (pooled_logits,) + transformer_outputs[1:]
1549
+ return ((loss,) + output) if loss is not None else output
1550
+
1551
+ return SequenceClassifierOutputWithPast(
1552
+ loss=loss,
1553
+ logits=pooled_logits,
1554
+ past_key_values=transformer_outputs.past_key_values,
1555
+ hidden_states=transformer_outputs.hidden_states,
1556
+ attentions=transformer_outputs.attentions,
1557
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1de1109b83e4835855daf766ae4281bd1be38a0a4fd165820b5a3a1498d3ceb
3
+ size 3087498236
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "bos_token": "<|im_start|>",
18
+ "eos_token": {
19
+ "content": "<|im_end|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": "<|im_start|>",
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 1000000000.0,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff