import base64 import os import ast from io import BytesIO from typing import List, Union import torch from PIL import Image, ImageFile import numpy as np from scipy.spatial.transform import Rotation from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig, PytorchEngineConfig IMAGE_TOKEN = '' def normalize_quaternion(quat): return np.array(quat) / np.linalg.norm(quat, axis=-1, keepdims=True) def quaternion_to_discrete_euler(quaternion, bins_num=256): euler = Rotation.from_quat(quaternion).as_euler('xyz', degrees=True) + 180 resolution = 360 / bins_num disc = np.around((euler / resolution)).astype(int) disc[disc == bins_num] = 0 return disc def discrete_euler_to_quaternion(discrete_euler, bins_num=256): resolution = 360 / bins_num euler = (discrete_euler * resolution) - 180 return Rotation.from_euler('xyz', euler, degrees=True).as_quat() class RotationActionDiscretizer: def __init__(self, bins_num=256, min_action=-1, max_action=1): """ Note: the input action is quaternion Args: bins_num: Number of bins to discretize the rotation space into. """ self.bins_num = bins_num def discretize(self, action: Union[np.ndarray, List[float]], degrees=False): # Check if the input action is quaternion or euler if len(action) == 4: return quaternion_to_discrete_euler(normalize_quaternion(action), bins_num=self.bins_num) else: return quaternion_to_discrete_euler( normalize_quaternion(Rotation.from_euler('xyz', action, degrees=degrees).as_quat()), bins_num=self.bins_num ) def undiscretize(self, discrete_action): return normalize_quaternion(discrete_euler_to_quaternion(discrete_action, bins_num=self.bins_num)) def get_action_space(self): return self.bins_num def generate_discrete_special_tokens(self)-> List[str]: return [f"" for i in range(self.bins_num)] def map_4d_quaternion_to_special_tokens(self, action) -> List[str]: discretiezd_action = self.discretize(action) return [f"" for action in discretiezd_action] def map_roll_pitch_yaw_to_special_tokens(self, roll_pitch_yaw: Union[np.ndarray, List[float]], degrees=False) -> List[str]: discretized_action = self.discretize(roll_pitch_yaw, degrees) return [f"" for a in discretized_action] class TranslationActionDiscretizer: def __init__(self, bins_num=256, min_action=-1, max_action=1): self.bins_num = bins_num self.min_action = min_action self.max_action = max_action # Create Uniform Bins + Compute Bin Centers self.bins = np.linspace(min_action, max_action, bins_num) self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0 def discretize(self, action: np.ndarray): action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action)) discretized_action = np.digitize(action, self.bins) return discretized_action def undiscretize(self, discrete_action): """ NOTE =>> Because of the way the actions are discretized w.r.t. the bins (and not the bin centers), the digitization returns bin indices between [1, # bins], inclusive, when there are actually only (# bins - 1) bin intervals. Therefore, if the digitization returns the last possible index, we map this to the last bin interval. EXAMPLE =>> Let's say self._bins has 256 values. Then self._bin_centers has 255 values. Digitization returns indices between [1, 256]. We subtract 1 from all indices so that they are between [0, 255]. There is still one index (i==255) that would cause an out-of-bounds error if used to index into self._bin_centers. Therefore, if i==255, we subtract 1 from it so that it just becomes the index of the last bin center. We implement this simply via clipping between [0, 255 - 1]. """ discrete_action = np.clip(discrete_action - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1) undiscretized_action = self.bin_centers[discrete_action] # Clamp the result to the action bounds return np.clip(undiscretized_action, self.min_action, self.max_action) def get_action_space(self): return self.bins_num def generate_discrete_special_tokens(self)-> List[str]: return [f"" for i in range(self.bins_num)] def map_3d_action_to_special_tokens(self, action) -> List[str]: discretiezd_action = self.discretize(action) return [f"" for action in discretiezd_action] class OpennessActionDiscretizer: def __init__(self, bins_num=256, min_openness=0, max_openness=1): """ Args: bins_num: Number of bins to discretize the openness space into. min_openness: Minimum openness of the gripper. max_openness: Maximum openness of the gripper. """ self.bins_num = bins_num self.min_openness = min_openness self.max_openness = max_openness # Create Uniform Bins + Compute Bin Centers self.bins = np.linspace(min_openness, max_openness, bins_num) self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0 def discretize(self, openness: float): openness = np.clip(openness, a_min=self.min_openness, a_max=self.max_openness) discretized_openness = np.digitize(openness, self.bins) return discretized_openness def undiscretize(self, discrete_openness): discrete_openness = np.clip(discrete_openness - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1) return self.bin_centers[discrete_openness] def get_action_space(self): return self.bins_num def generate_discrete_special_tokens(self) -> List[str]: return [f"" for i in range(self.bins_num)] def map_openness_to_special_tokens(self, openness) -> List[str]: discretized_openness = self.discretize(openness) return [f""] # def construct_lmdeploy_tasks(jsonl_path): # data = load_jsonl(jsonl_path) # lmdeploy_tasks = [] # for sample_idx, item in enumerate(data): # langs = item["conversations"][0]["value"] # langs = langs.replace("", IMAGE_TOKEN) # image_urls = [ # os.path.join(sample_save_folder, f"{sample_idx}_{im_idx}.png") for im_idx in range(len(item["image"])) # ] # gt_lang = item["conversations"][1]["value"] # lmdeploy_tasks.append((langs, image_urls, gt_lang)) # return lmdeploy_tasks def load_image_from_base64(image: Union[bytes, str]) -> Image.Image: """load image from base64 format.""" return Image.open(BytesIO(base64.b64decode(image))) def load_image(image_url: Union[str, Image.Image]) -> Image.Image: """load image from url, local path or openai GPT4V.""" FETCH_TIMEOUT = int(os.environ.get('LMDEPLOY_FETCH_TIMEOUT', 10)) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 ' '(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3' } try: ImageFile.LOAD_TRUNCATED_IMAGES = True if isinstance(image_url, Image.Image): img = image_url else: # Load image from local path img = Image.open(image_url) # check image valid img = img.convert('RGB') except Exception as error: if isinstance(image_url, str) and len(image_url) > 100: image_url = image_url[:100] + ' ...' print(f'{error}, image_url={image_url}') # use dummy image img = Image.new('RGB', (32, 32)) return img # Function to print GPU memory usage def print_gpu_memory(): if torch.cuda.is_available(): allocated_memory = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB cached_memory = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB print(f"Allocated GPU Memory: {allocated_memory:.2f} MB") print(f"Cached GPU Memory: {cached_memory:.2f} MB") else: print("CUDA is not available.") print_gpu_memory() model = '/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit' if "bit" in model: pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=2048, cache_max_entry_count=0.5), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2')) else: pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2')) # pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5, quant_policy=8), chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2')) print_gpu_memory() TRANS_MAX = 0.275 TRANS_MIN = -0.275 ROT_MIN = -0.350 ROT_MAX = 0.395 OPEN_MIN = -0.388 OPEN_MAX = 0.300 translation_bins_num = 256 rotation_bins_num = 256 openness_bins_num = 256 translation_action_discretizer = TranslationActionDiscretizer(bins_num=translation_bins_num, max_action=TRANS_MAX, min_action=TRANS_MIN) rotation_action_discretizer = RotationActionDiscretizer(bins_num=rotation_bins_num, min_action=ROT_MIN, max_action=ROT_MAX) openness_action_discretizer = OpennessActionDiscretizer(bins_num=openness_bins_num, min_openness=OPEN_MIN, max_openness=OPEN_MAX) VQA_FORMAT = f"{IMAGE_TOKEN}\n {IMAGE_TOKEN}\n Given the observation images from the wrist camera mounted at CAM_PARAM and the overhead camera mounted at CAM_PARAM, please provide the action that the robot should take to finish the task: TASK" # question_template = "\n \n Given the observation images from the wrist camera mounted at [256,89,256,236,129,181] and the overhead camera mounted at [82,1,256,54,128,98], please provide the action that the robot should take to finish the task: place a chess piece on the chessboar" # cam_params xyz-rpy wrist_cam_pose = [0.3618544138321802, -0.08323374464523976, 0.41759402329169787, 2.6584232953914344, 0.035482430406705845, 1.2906347836099603] overhead_cam_pose = [-0.09877916942983442, -0.3919519409041736, 0.4780865865815033, -1.8237694898473762, -0.012183613523460979, -0.746683044221379] cam_pose_list = [wrist_cam_pose, overhead_cam_pose] for cam_pose in cam_pose_list: cam_xyz_token = translation_action_discretizer.discretize(np.array(cam_pose[:3])) cam_rpy_token = rotation_action_discretizer.discretize(np.array(cam_pose[3:6])) cam_action_tokens = [cam_xyz_token[0], cam_xyz_token[1], cam_xyz_token[2], cam_rpy_token[0], cam_rpy_token[1], cam_rpy_token[2]] cam_action_tokens_str = "[" + ",".join(map(str, cam_action_tokens)) + "]" VQA_FORMAT = VQA_FORMAT.replace("CAM_PARAM", cam_action_tokens_str, 1) # task lang task = "Pick up the green object from the table and put it in the bowl" VQA_FORMAT = VQA_FORMAT.replace("TASK", task) img1 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_0.png" img2 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_1.png" images = [load_image(img1), load_image(img2)] # only need to return the PIL.Image object response = pipe((VQA_FORMAT, images)) print(response.text) print("gt: [124,137,104,126,130,129,233]") action_list = np.array(ast.literal_eval(response.text)) xyz = translation_action_discretizer.undiscretize(action_list[:3]) rpy = rotation_action_discretizer.undiscretize(action_list[3:6]) openness = openness_action_discretizer.undiscretize(action_list[6]) print(f"xyz: {xyz}, rpy: {rpy}, openness: {openness}") # srun --jobid 16125415 -n1 python lmdeploy_infer.py """ # quant to 8bit export HF_MODEL=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1 export WORK_DIR=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit srun --jobid 16125415 -n1 lmdeploy lite auto_awq \ $HF_MODEL \ --calib-dataset 'ptb' \ --calib-samples 128 \ --calib-seqlen 2048 \ --w-bits 4 \ --w-group-size 128 \ --batch-size 16 \ --search-scale True \ --work-dir $WORK_DIR # 8bit srun --jobid 16125415 -n1 lmdeploy lite smooth_quant $HF_MODEL --work-dir $WORK_DIR """