File size: 12,757 Bytes
f0b0f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import base64
import os
import ast
from io import BytesIO
from typing import List, Union
import torch

from PIL import Image, ImageFile
import numpy as np
from scipy.spatial.transform import Rotation

from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig, PytorchEngineConfig
IMAGE_TOKEN = '<IMAGE_TOKEN>'

def normalize_quaternion(quat):
    return np.array(quat) / np.linalg.norm(quat, axis=-1, keepdims=True)

def quaternion_to_discrete_euler(quaternion, bins_num=256):
    euler = Rotation.from_quat(quaternion).as_euler('xyz', degrees=True) + 180
    resolution = 360 / bins_num
    disc = np.around((euler / resolution)).astype(int)
    disc[disc == bins_num] = 0
    return disc

def discrete_euler_to_quaternion(discrete_euler, bins_num=256):
    resolution = 360 / bins_num
    euler = (discrete_euler * resolution) - 180
    return Rotation.from_euler('xyz', euler, degrees=True).as_quat()


class RotationActionDiscretizer:
    def __init__(self, bins_num=256, min_action=-1, max_action=1):
        """
        Note: the input action is quaternion
        Args: bins_num: Number of bins to discretize the rotation space into.
        """
        self.bins_num = bins_num

    def discretize(self, action: Union[np.ndarray, List[float]], degrees=False):
        # Check if the input action is quaternion or euler
        if len(action) == 4:
            return quaternion_to_discrete_euler(normalize_quaternion(action), bins_num=self.bins_num)
        else:
            return quaternion_to_discrete_euler(
                normalize_quaternion(Rotation.from_euler('xyz', action, degrees=degrees).as_quat()),
                bins_num=self.bins_num
            )

    def undiscretize(self, discrete_action):
        return normalize_quaternion(discrete_euler_to_quaternion(discrete_action, bins_num=self.bins_num))
    
    def get_action_space(self):
        return self.bins_num
    
    def generate_discrete_special_tokens(self)-> List[str]:
        return [f"<rot{i}>" for i in range(self.bins_num)]
    
    def map_4d_quaternion_to_special_tokens(self, action) -> List[str]:
        discretiezd_action = self.discretize(action)
        return [f"<rot{action}>" for action in discretiezd_action]
    
    def map_roll_pitch_yaw_to_special_tokens(self, roll_pitch_yaw: Union[np.ndarray, List[float]], degrees=False) -> List[str]:
        discretized_action = self.discretize(roll_pitch_yaw, degrees)
        return [f"<rot{a}>" for a in discretized_action]


class TranslationActionDiscretizer:
    def __init__(self, bins_num=256, min_action=-1, max_action=1):
        self.bins_num = bins_num
        self.min_action = min_action
        self.max_action = max_action
        
        # Create Uniform Bins + Compute Bin Centers
        self.bins = np.linspace(min_action, max_action, bins_num)
        self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0

    def discretize(self, action: np.ndarray):
        action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
        discretized_action = np.digitize(action, self.bins)
        return discretized_action

    def undiscretize(self, discrete_action):
        """
        NOTE =>> Because of the way the actions are discretized w.r.t. the bins (and not the bin centers), the
                 digitization returns bin indices between [1, # bins], inclusive, when there are actually only
                 (# bins - 1) bin intervals.

                 Therefore, if the digitization returns the last possible index, we map this to the last bin interval.

        EXAMPLE =>> Let's say self._bins has 256 values. Then self._bin_centers has 255 values. Digitization returns
                    indices between [1, 256]. We subtract 1 from all indices so that they are between [0, 255]. There
                    is still one index (i==255) that would cause an out-of-bounds error if used to index into
                    self._bin_centers. Therefore, if i==255, we subtract 1 from it so that it just becomes the index of
                    the last bin center. We implement this simply via clipping between [0, 255 - 1].
        """
        
        discrete_action = np.clip(discrete_action - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
        undiscretized_action = self.bin_centers[discrete_action]
        
        # Clamp the result to the action bounds
        return np.clip(undiscretized_action, self.min_action, self.max_action)
    
    def get_action_space(self):
        return self.bins_num
    
    def generate_discrete_special_tokens(self)-> List[str]:
        return [f"<loc{i}>" for i in range(self.bins_num)]
    
    def map_3d_action_to_special_tokens(self, action) -> List[str]:
        discretiezd_action = self.discretize(action)
        return [f"<loc{action}>" for action in discretiezd_action]
    
    
class OpennessActionDiscretizer:
    def __init__(self, bins_num=256, min_openness=0, max_openness=1):
        """
        Args:
            bins_num: Number of bins to discretize the openness space into.
            min_openness: Minimum openness of the gripper.
            max_openness: Maximum openness of the gripper.
        """
        self.bins_num = bins_num
        self.min_openness = min_openness
        self.max_openness = max_openness
        
        # Create Uniform Bins + Compute Bin Centers
        self.bins = np.linspace(min_openness, max_openness, bins_num)
        self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0

    def discretize(self, openness: float):
        openness = np.clip(openness, a_min=self.min_openness, a_max=self.max_openness)
        discretized_openness = np.digitize(openness, self.bins)
        return discretized_openness

    def undiscretize(self, discrete_openness):
        discrete_openness = np.clip(discrete_openness - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
        return self.bin_centers[discrete_openness]
    
    def get_action_space(self):
        return self.bins_num
    
    def generate_discrete_special_tokens(self) -> List[str]:
        return [f"<open{i}>" for i in range(self.bins_num)]
    
    def map_openness_to_special_tokens(self, openness) -> List[str]:
        discretized_openness = self.discretize(openness)
        return [f"<open{discretized_openness}>"]

# def construct_lmdeploy_tasks(jsonl_path):
#     data = load_jsonl(jsonl_path)
    
#     lmdeploy_tasks = []
#     for sample_idx, item in enumerate(data):
        
#         langs = item["conversations"][0]["value"]
#         langs = langs.replace("<image>", IMAGE_TOKEN)
#         image_urls = [
#             os.path.join(sample_save_folder, f"{sample_idx}_{im_idx}.png") for im_idx in range(len(item["image"]))
#         ]
#         gt_lang = item["conversations"][1]["value"]
#         lmdeploy_tasks.append((langs, image_urls, gt_lang))
    
#     return lmdeploy_tasks

def load_image_from_base64(image: Union[bytes, str]) -> Image.Image:
    """load image from base64 format."""
    return Image.open(BytesIO(base64.b64decode(image)))

def load_image(image_url: Union[str, Image.Image]) -> Image.Image:
    """load image from url, local path or openai GPT4V."""
    FETCH_TIMEOUT = int(os.environ.get('LMDEPLOY_FETCH_TIMEOUT', 10))
    headers = {
        'User-Agent':
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 '
        '(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    try:
        ImageFile.LOAD_TRUNCATED_IMAGES = True
        if isinstance(image_url, Image.Image):
            img = image_url
        else:
            # Load image from local path
            img = Image.open(image_url)

        # check image valid
        img = img.convert('RGB')
    except Exception as error:
        if isinstance(image_url, str) and len(image_url) > 100:
            image_url = image_url[:100] + ' ...'
        print(f'{error}, image_url={image_url}')
        # use dummy image
        img = Image.new('RGB', (32, 32))

    return img

# Function to print GPU memory usage
def print_gpu_memory():
    if torch.cuda.is_available():
        allocated_memory = torch.cuda.memory_allocated() / (1024 ** 2)  # Convert to MB
        cached_memory = torch.cuda.memory_reserved() / (1024 ** 2)    # Convert to MB
        print(f"Allocated GPU Memory: {allocated_memory:.2f} MB")
        print(f"Cached GPU Memory: {cached_memory:.2f} MB")
    else:
        print("CUDA is not available.")
        
print_gpu_memory()
model = '/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit'
if "bit" in model:
    pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=2048, cache_max_entry_count=0.5),  chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
else:
    pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5),  chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
# pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=2048, cache_max_entry_count=0.5, quant_policy=8),  chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2'))
print_gpu_memory()

TRANS_MAX = 0.275
TRANS_MIN = -0.275

ROT_MIN = -0.350
ROT_MAX = 0.395

OPEN_MIN = -0.388
OPEN_MAX = 0.300

translation_bins_num = 256
rotation_bins_num = 256
openness_bins_num = 256
translation_action_discretizer = TranslationActionDiscretizer(bins_num=translation_bins_num, max_action=TRANS_MAX, min_action=TRANS_MIN)
rotation_action_discretizer = RotationActionDiscretizer(bins_num=rotation_bins_num, min_action=ROT_MIN, max_action=ROT_MAX)
openness_action_discretizer = OpennessActionDiscretizer(bins_num=openness_bins_num, min_openness=OPEN_MIN, max_openness=OPEN_MAX)

VQA_FORMAT = f"{IMAGE_TOKEN}\n {IMAGE_TOKEN}\n Given the observation images from the wrist camera mounted at CAM_PARAM and the overhead camera mounted at CAM_PARAM, please provide the action that the robot should take to finish the task: TASK"
# question_template = "<image>\n <image>\n Given the observation images from the wrist camera mounted at <cam>[256,89,256,236,129,181]</cam> and the overhead camera mounted at <cam>[82,1,256,54,128,98]</cam>, please provide the action that the robot should take to finish the task: place a chess piece on the chessboar"

# cam_params xyz-rpy
wrist_cam_pose = [0.3618544138321802, -0.08323374464523976, 0.41759402329169787, 2.6584232953914344, 0.035482430406705845, 1.2906347836099603]
overhead_cam_pose = [-0.09877916942983442, -0.3919519409041736, 0.4780865865815033, -1.8237694898473762, -0.012183613523460979, -0.746683044221379]
cam_pose_list = [wrist_cam_pose, overhead_cam_pose]
for cam_pose in cam_pose_list:
    cam_xyz_token = translation_action_discretizer.discretize(np.array(cam_pose[:3]))
    cam_rpy_token = rotation_action_discretizer.discretize(np.array(cam_pose[3:6]))
    cam_action_tokens = [cam_xyz_token[0], cam_xyz_token[1], cam_xyz_token[2], cam_rpy_token[0], cam_rpy_token[1], cam_rpy_token[2]]
    cam_action_tokens_str = "<cam>[" + ",".join(map(str, cam_action_tokens)) + "]</cam>"
    VQA_FORMAT = VQA_FORMAT.replace("CAM_PARAM", cam_action_tokens_str, 1)
    
# task lang
task = "Pick up the green object from the table and put it in the bowl"
VQA_FORMAT = VQA_FORMAT.replace("TASK", task)

img1 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_0.png"
img2 = "/mnt/petrelfs/huangsiyuan/VLA/droid_action_tasks_internvl/sample_images/2_1.png"
images = [load_image(img1), load_image(img2)] # only need to return the PIL.Image object
response = pipe((VQA_FORMAT, images))
print(response.text)
print("gt: [124,137,104,126,130,129,233]")
action_list =  np.array(ast.literal_eval(response.text))
xyz = translation_action_discretizer.undiscretize(action_list[:3])
rpy = rotation_action_discretizer.undiscretize(action_list[3:6])
openness = openness_action_discretizer.undiscretize(action_list[6])

print(f"xyz: {xyz}, rpy: {rpy}, openness: {openness}")

# srun --jobid 16125415  -n1 python lmdeploy_infer.py
"""
# quant to 8bit
export HF_MODEL=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1
export WORK_DIR=/mnt/petrelfs/huangsiyuan/VLA/InternVL/internvl_chat/output/internvla_8b_1node_with_visual_traces_wo_sp_token_w_cam/VLA8B_V1_8bit

srun --jobid 16125415  -n1  lmdeploy lite auto_awq \
   $HF_MODEL \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 16 \
  --search-scale True \
  --work-dir $WORK_DIR

# 8bit
srun --jobid 16125415  -n1  lmdeploy lite smooth_quant $HF_MODEL --work-dir $WORK_DIR
  
"""