import torch import transformers from datasets import load_dataset from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer, AutoTokenizer # Load dataset dataset = load_dataset("csv", data_files={"train": "train_data.csv", "test": "test_data.csv"}) # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=6) def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", save_strategy="epoch", per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, push_to_hub=True, hub_model_id="PSivaMallikarjun/herbivorous-food-model" ) # Trainer setup trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], tokenizer=tokenizer, ) # Train model trainer.train() # Save model trainer.save_model("herbivorous_food_model") print("Model training complete and saved!") # Push to Hugging Face Hub trainer.push_to_hub()