SivaMallikarjun's picture
Update main.py
b49f5b6 verified
import torch
import transformers
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer, AutoTokenizer
# Load dataset
dataset = load_dataset("csv", data_files={"train": "train_data.csv", "test": "test_data.csv"})
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=6)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01,
push_to_hub=True,
hub_model_id="PSivaMallikarjun/herbivorous-food-model"
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
)
# Train model
trainer.train()
# Save model
trainer.save_model("herbivorous_food_model")
print("Model training complete and saved!")
# Push to Hugging Face Hub
trainer.push_to_hub()