|
import torch |
|
import transformers |
|
from datasets import load_dataset |
|
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer, AutoTokenizer |
|
|
|
|
|
dataset = load_dataset("csv", data_files={"train": "train_data.csv", "test": "test_data.csv"}) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") |
|
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=6) |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], padding="max_length", truncation=True) |
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
push_to_hub=True, |
|
hub_model_id="PSivaMallikarjun/herbivorous-food-model" |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_datasets["train"], |
|
eval_dataset=tokenized_datasets["test"], |
|
tokenizer=tokenizer, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model("herbivorous_food_model") |
|
print("Model training complete and saved!") |
|
|
|
|
|
trainer.push_to_hub() |
|
|