Upload ModernBERT model
Browse files- 1_Pooling/config.json +10 -0
- README.md +500 -0
- added_tokens.json +6 -0
- config.json +48 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +97 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 512,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:1761750
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: Shuu12121/CodeModernBERT-Snake
|
10 |
+
widget:
|
11 |
+
- source_sentence: // MiddlewareHeaders adds headers to a handler
|
12 |
+
sentences:
|
13 |
+
- "function create(options) {\n console.log('Creating app: ', options.name);\n\n\
|
14 |
+
\ if (!options.status)\n options.status = (code, msg) => {\n console.log(msg);\n\
|
15 |
+
\ };\n if (!options.type) options.type = 'rekit-react';\n\n const prjDir\
|
16 |
+
\ = path.join(options.location || process.cwd(), options.name);\n return new\
|
17 |
+
\ Promise(async (resolve, reject) => {\n try {\n if (fs.existsSync(prjDir))\
|
18 |
+
\ {\n reject('FOLDER_EXISTS');\n return;\n }\n fs.mkdirSync(prjDir);\n\
|
19 |
+
\ let gitRepo;\n if (options.source) {\n if (/^https?:/.test(options.source))\
|
20 |
+
\ {\n // It's a git repo\n gitRepo = options.source;\n \
|
21 |
+
\ } else {\n // It's a local folder\n const srcDir = path.isAbsolute(options.source)\n\
|
22 |
+
\ ? options.source\n : path.join(process.cwd(), options.source);\n\
|
23 |
+
\ options.status('CREATE_APP_COPY_FILES', `Copy files from ${srcDir}...`);\n\
|
24 |
+
\ await fs.copy(srcDir, prjDir, {\n filter: src => !/\\/(\\\
|
25 |
+
.git|node_modules\\/|node_modules$)/.test(src) || path.basename(src) === '.gitignore',\n\
|
26 |
+
\ });\n }\n } else if (options.type) {\n // Get gitRepo\n\
|
27 |
+
\ options.status(\n 'QUERY_APP_TYPES_GIT_REPO',\n `Looking\
|
28 |
+
\ for the git repo for app type ${options.type}...`,\n );\n const\
|
29 |
+
\ appTypes = await getAppTypes();\n const appType = _.find(appTypes, {\
|
30 |
+
\ id: options.type });\n if (!appType) reject('APP_TYPE_NOT_SUPPORTED');\n\
|
31 |
+
\ gitRepo = appType.repo;\n } else {\n await fs.remove(prjDir);\n\
|
32 |
+
\ reject('NO_SOURCE_OR_APP_TYPE');\n }\n\n if (gitRepo) {\n \
|
33 |
+
\ options.status('CLONE_PROJECT', `Downloading project from ${gitRepo}...`);\n\
|
34 |
+
\ await cloneRepo(gitRepo, prjDir);\n }\n\n postCreate(prjDir,\
|
35 |
+
\ options);\n options.status('CREATION_SUCCESS', '\U0001F603App creation\
|
36 |
+
\ success.');\n resolve();\n } catch (err) {\n console.log('Failed\
|
37 |
+
\ to create project.');\n fs.removeSync(prjDir);\n reject(err);\n \
|
38 |
+
\ }\n });\n}"
|
39 |
+
- "@Override\n\tpublic void setFrameworkID(Option<Protos.FrameworkID> frameworkID)\
|
40 |
+
\ throws Exception {\n\t\tsynchronized (startStopLock) {\n\t\t\tverifyIsRunning();\n\
|
41 |
+
\n\t\t\tbyte[] value = frameworkID.isDefined() ? frameworkID.get().getValue().getBytes(ConfigConstants.DEFAULT_CHARSET)\
|
42 |
+
\ :\n\t\t\t\tnew byte[0];\n\t\t\tframeworkIdInZooKeeper.setValue(value);\n\t\t\
|
43 |
+
}\n\t}"
|
44 |
+
- "func MiddlewareHeaders(vs map[string]string) Middleware {\n\treturn func(h http.Handler)\
|
45 |
+
\ http.Handler {\n\t\treturn http.HandlerFunc(func(rw http.ResponseWriter, r *http.Request)\
|
46 |
+
\ {\n\t\t\t// Add headers\n\t\t\thandleHeaders(vs, rw)\n\n\t\t\t// Next handler\n\
|
47 |
+
\t\t\th.ServeHTTP(rw, r)\n\t\t})\n\t}\n}"
|
48 |
+
- source_sentence: 'Parses a Plist XML string. Returns an Object.
|
49 |
+
|
50 |
+
|
51 |
+
@param {String} xml - the XML String to decode
|
52 |
+
|
53 |
+
@param {Function} callback - callback function
|
54 |
+
|
55 |
+
@returns {Mixed} the decoded value from the Plist XML
|
56 |
+
|
57 |
+
@api public
|
58 |
+
|
59 |
+
@deprecated use parse() instead'
|
60 |
+
sentences:
|
61 |
+
- "function parseStringSync (xml) {\n var doc = new DOMParser().parseFromString(xml);\n\
|
62 |
+
\ var plist;\n if (doc.documentElement.nodeName !== 'plist') {\n throw new\
|
63 |
+
\ Error('malformed document. First element should be <plist>');\n }\n plist\
|
64 |
+
\ = parsePlistXML(doc.documentElement);\n\n // if the plist is an array with\
|
65 |
+
\ 1 element, pull it out of the array\n if (plist.length == 1) {\n plist =\
|
66 |
+
\ plist[0];\n }\n return plist;\n}"
|
67 |
+
- "func GetCallStringArgsValues(n ast.Node, ctx *Context) []string {\n\tvalues :=\
|
68 |
+
\ []string{}\n\tswitch node := n.(type) {\n\tcase *ast.CallExpr:\n\t\tfor _, arg\
|
69 |
+
\ := range node.Args {\n\t\t\tswitch param := arg.(type) {\n\t\t\tcase *ast.BasicLit:\n\
|
70 |
+
\t\t\t\tvalue, err := GetString(param)\n\t\t\t\tif err == nil {\n\t\t\t\t\tvalues\
|
71 |
+
\ = append(values, value)\n\t\t\t\t}\n\t\t\tcase *ast.Ident:\n\t\t\t\tvalues =\
|
72 |
+
\ append(values, GetIdentStringValues(param)...)\n\t\t\t}\n\t\t}\n\t}\n\treturn\
|
73 |
+
\ values\n}"
|
74 |
+
- "public static Date beginOfYear(@NotNull final Date date) {\n\t\treturn DateUtils.truncate(date,\
|
75 |
+
\ Calendar.YEAR);\n\t}"
|
76 |
+
- source_sentence: '// forbiddenImportsFor determines all of the forbidden
|
77 |
+
|
78 |
+
// imports for a package given the import restrictions
|
79 |
+
|
80 |
+
// and returns a deduplicated list of them'
|
81 |
+
sentences:
|
82 |
+
- "func (i *ImportRestriction) forbiddenImportsFor(pkg Package) []string {\n\tforbiddenImportSet\
|
83 |
+
\ := map[string]struct{}{}\n\timports := pkg.Imports\n\tif !i.ExcludeTests {\n\
|
84 |
+
\t\timports = append(imports, append(pkg.TestImports, pkg.XTestImports...)...)\n\
|
85 |
+
\t}\n\tfor _, imp := range imports {\n\t\tpath := extractVendorPath(imp)\n\t\t\
|
86 |
+
if i.isForbidden(path) {\n\t\t\tforbiddenImportSet[path] = struct{}{}\n\t\t}\n\
|
87 |
+
\t}\n\n\tvar forbiddenImports []string\n\tfor imp := range forbiddenImportSet\
|
88 |
+
\ {\n\t\tforbiddenImports = append(forbiddenImports, imp)\n\t}\n\treturn forbiddenImports\n\
|
89 |
+
}"
|
90 |
+
- "function pick(o, props = []) {\n return props.reduce((acc, k) => {\n \
|
91 |
+
\ if (o.hasOwnProperty(k)) {\n acc[k] = o[k];\n }\n\n \
|
92 |
+
\ return acc;\n }, {});\n}"
|
93 |
+
- "func (s *PutTraceSegmentsOutput) SetUnprocessedTraceSegments(v []*UnprocessedTraceSegment)\
|
94 |
+
\ *PutTraceSegmentsOutput {\n\ts.UnprocessedTraceSegments = v\n\treturn s\n}"
|
95 |
+
- source_sentence: 'Validates whether the specified template is syntactically correct
|
96 |
+
and will be accepted by Azure Resource Manager..
|
97 |
+
|
98 |
+
|
99 |
+
@param resourceGroupName The name of the resource group the template will be deployed
|
100 |
+
to. The name is case insensitive.
|
101 |
+
|
102 |
+
@param deploymentName The name of the deployment.
|
103 |
+
|
104 |
+
@param properties The deployment properties.
|
105 |
+
|
106 |
+
@param serviceCallback the async ServiceCallback to handle successful and failed
|
107 |
+
responses.
|
108 |
+
|
109 |
+
@throws IllegalArgumentException thrown if parameters fail the validation
|
110 |
+
|
111 |
+
@return the {@link ServiceFuture} object'
|
112 |
+
sentences:
|
113 |
+
- "func Execute(v string) {\n\tversion = v\n\tif err := rootCmd.Execute(); err !=\
|
114 |
+
\ nil {\n\t\tlog.Fatal(err)\n\t}\n}"
|
115 |
+
- "function( otherPath )\r\n\t{\r\n\t\tvar thisElements = this.elements;\r\n\t\t\
|
116 |
+
var otherElements = otherPath && otherPath.elements;\r\n\r\n\t\tif ( !otherElements\
|
117 |
+
\ || thisElements.length != otherElements.length )\r\n\t\t\treturn false;\r\n\r\
|
118 |
+
\n\t\tfor ( var i = 0 ; i < thisElements.length ; i++ )\r\n\t\t{\r\n\t\t\tif (\
|
119 |
+
\ !thisElements[ i ].equals( otherElements[ i ] ) )\r\n\t\t\t\treturn false;\r\
|
120 |
+
\n\t\t}\r\n\r\n\t\treturn true;\r\n\t}"
|
121 |
+
- "public ServiceFuture<DeploymentValidateResultInner> validateAsync(String resourceGroupName,\
|
122 |
+
\ String deploymentName, DeploymentProperties properties, final ServiceCallback<DeploymentValidateResultInner>\
|
123 |
+
\ serviceCallback) {\n return ServiceFuture.fromResponse(validateWithServiceResponseAsync(resourceGroupName,\
|
124 |
+
\ deploymentName, properties), serviceCallback);\n }"
|
125 |
+
- source_sentence: This method calculates the turn weight separately.
|
126 |
+
sentences:
|
127 |
+
- "private SingleType parseSingleType() throws TTXPathException {\n\n final\
|
128 |
+
\ String atomicType = parseAtomicType();\n final boolean intero = is(TokenType.INTERROGATION,\
|
129 |
+
\ true);\n return new SingleType(atomicType, intero);\n }"
|
130 |
+
- "public void putAllWriteable(BeanMap<T> map) {\n map.types.keySet().stream().filter(key\
|
131 |
+
\ -> getWriteInvoker(key) != null).forEach(key -> this.put(key, map.get(key)));\n\
|
132 |
+
\ }"
|
133 |
+
- "public double calcTurnWeight(int edgeFrom, int nodeVia, int edgeTo) {\n \
|
134 |
+
\ long turnFlags = turnCostExt.getTurnCostFlags(edgeFrom, nodeVia, edgeTo);\n\
|
135 |
+
\ if (turnCostEncoder.isTurnRestricted(turnFlags))\n return\
|
136 |
+
\ Double.POSITIVE_INFINITY;\n\n return turnCostEncoder.getTurnCost(turnFlags);\n\
|
137 |
+
\ }"
|
138 |
+
pipeline_tag: sentence-similarity
|
139 |
+
library_name: sentence-transformers
|
140 |
+
---
|
141 |
+
|
142 |
+
# SentenceTransformer based on Shuu12121/CodeModernBERT-Snake
|
143 |
+
|
144 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Snake](https://huggingface.co/Shuu12121/CodeModernBERT-Snake). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
145 |
+
|
146 |
+
## Model Details
|
147 |
+
|
148 |
+
### Model Description
|
149 |
+
- **Model Type:** Sentence Transformer
|
150 |
+
- **Base model:** [Shuu12121/CodeModernBERT-Snake](https://huggingface.co/Shuu12121/CodeModernBERT-Snake) <!-- at revision 73927b7c029b82e13135c02a1d4c5b50564d1e0d -->
|
151 |
+
- **Maximum Sequence Length:** 1024 tokens
|
152 |
+
- **Output Dimensionality:** 512 dimensions
|
153 |
+
- **Similarity Function:** Cosine Similarity
|
154 |
+
<!-- - **Training Dataset:** Unknown -->
|
155 |
+
<!-- - **Language:** Unknown -->
|
156 |
+
<!-- - **License:** Unknown -->
|
157 |
+
|
158 |
+
### Model Sources
|
159 |
+
|
160 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
161 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
162 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
163 |
+
|
164 |
+
### Full Model Architecture
|
165 |
+
|
166 |
+
```
|
167 |
+
SentenceTransformer(
|
168 |
+
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
169 |
+
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
170 |
+
)
|
171 |
+
```
|
172 |
+
|
173 |
+
## Usage
|
174 |
+
|
175 |
+
### Direct Usage (Sentence Transformers)
|
176 |
+
|
177 |
+
First install the Sentence Transformers library:
|
178 |
+
|
179 |
+
```bash
|
180 |
+
pip install -U sentence-transformers
|
181 |
+
```
|
182 |
+
|
183 |
+
Then you can load this model and run inference.
|
184 |
+
```python
|
185 |
+
from sentence_transformers import SentenceTransformer
|
186 |
+
|
187 |
+
# Download from the 🤗 Hub
|
188 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
189 |
+
# Run inference
|
190 |
+
sentences = [
|
191 |
+
'This method calculates the turn weight separately.',
|
192 |
+
'public double calcTurnWeight(int edgeFrom, int nodeVia, int edgeTo) {\n long turnFlags = turnCostExt.getTurnCostFlags(edgeFrom, nodeVia, edgeTo);\n if (turnCostEncoder.isTurnRestricted(turnFlags))\n return Double.POSITIVE_INFINITY;\n\n return turnCostEncoder.getTurnCost(turnFlags);\n }',
|
193 |
+
'public void putAllWriteable(BeanMap<T> map) {\n map.types.keySet().stream().filter(key -> getWriteInvoker(key) != null).forEach(key -> this.put(key, map.get(key)));\n }',
|
194 |
+
]
|
195 |
+
embeddings = model.encode(sentences)
|
196 |
+
print(embeddings.shape)
|
197 |
+
# [3, 512]
|
198 |
+
|
199 |
+
# Get the similarity scores for the embeddings
|
200 |
+
similarities = model.similarity(embeddings, embeddings)
|
201 |
+
print(similarities.shape)
|
202 |
+
# [3, 3]
|
203 |
+
```
|
204 |
+
|
205 |
+
<!--
|
206 |
+
### Direct Usage (Transformers)
|
207 |
+
|
208 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
209 |
+
|
210 |
+
</details>
|
211 |
+
-->
|
212 |
+
|
213 |
+
<!--
|
214 |
+
### Downstream Usage (Sentence Transformers)
|
215 |
+
|
216 |
+
You can finetune this model on your own dataset.
|
217 |
+
|
218 |
+
<details><summary>Click to expand</summary>
|
219 |
+
|
220 |
+
</details>
|
221 |
+
-->
|
222 |
+
|
223 |
+
<!--
|
224 |
+
### Out-of-Scope Use
|
225 |
+
|
226 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
227 |
+
-->
|
228 |
+
|
229 |
+
<!--
|
230 |
+
## Bias, Risks and Limitations
|
231 |
+
|
232 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
233 |
+
-->
|
234 |
+
|
235 |
+
<!--
|
236 |
+
### Recommendations
|
237 |
+
|
238 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
239 |
+
-->
|
240 |
+
|
241 |
+
## Training Details
|
242 |
+
|
243 |
+
### Training Dataset
|
244 |
+
|
245 |
+
#### Unnamed Dataset
|
246 |
+
|
247 |
+
* Size: 1,761,750 training samples
|
248 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
249 |
+
* Approximate statistics based on the first 1000 samples:
|
250 |
+
| | sentence_0 | sentence_1 | label |
|
251 |
+
|:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
252 |
+
| type | string | string | float |
|
253 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 47.87 tokens</li><li>max: 633 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 164.44 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
254 |
+
* Samples:
|
255 |
+
| sentence_0 | sentence_1 | label |
|
256 |
+
|:-----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
257 |
+
| <code>// Read reads from serial port.<br>// It is blocked until data received or timeout after p.timeout.</code> | <code>func (p *port) Read(b []byte) (n int, err error) {<br> var done uint32<br> if err = syscall.ReadFile(p.handle, b, &done, nil); err != nil {<br> return<br> }<br> if done == 0 {<br> err = ErrTimeout<br> return<br> }<br> n = int(done)<br> return<br>}</code> | <code>1.0</code> |
|
258 |
+
| <code>// _NET_WM_STRUT_PARTIAL set</code> | <code>func WmStrutPartialSet(xu *xgbutil.XUtil, win xproto.Window,<br> struts *WmStrutPartial) error {<br><br> rawStruts := make([]uint, 12)<br> rawStruts[0] = struts.Left<br> rawStruts[1] = struts.Right<br> rawStruts[2] = struts.Top<br> rawStruts[3] = struts.Bottom<br> rawStruts[4] = struts.LeftStartY<br> rawStruts[5] = struts.LeftEndY<br> rawStruts[6] = struts.RightStartY<br> rawStruts[7] = struts.RightEndY<br> rawStruts[8] = struts.TopStartX<br> rawStruts[9] = struts.TopEndX<br> rawStruts[10] = struts.BottomStartX<br> rawStruts[11] = struts.BottomEndX<br><br> return xprop.ChangeProp32(xu, win, "_NET_WM_STRUT_PARTIAL", "CARDINAL",<br> rawStruts...)<br>}</code> | <code>1.0</code> |
|
259 |
+
| <code>// Union returns a new geometry representing all points in this geometry and the<br>// other.</code> | <code>func (g *Geometry) Union(other *Geometry) (*Geometry, error) {<br> return g.binaryTopo("Union", cGEOSUnion, other)<br>}</code> | <code>1.0</code> |
|
260 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
261 |
+
```json
|
262 |
+
{
|
263 |
+
"scale": 20.0,
|
264 |
+
"similarity_fct": "cos_sim"
|
265 |
+
}
|
266 |
+
```
|
267 |
+
|
268 |
+
### Training Hyperparameters
|
269 |
+
#### Non-Default Hyperparameters
|
270 |
+
|
271 |
+
- `per_device_train_batch_size`: 400
|
272 |
+
- `per_device_eval_batch_size`: 400
|
273 |
+
- `num_train_epochs`: 5
|
274 |
+
- `fp16`: True
|
275 |
+
- `multi_dataset_batch_sampler`: round_robin
|
276 |
+
|
277 |
+
#### All Hyperparameters
|
278 |
+
<details><summary>Click to expand</summary>
|
279 |
+
|
280 |
+
- `overwrite_output_dir`: False
|
281 |
+
- `do_predict`: False
|
282 |
+
- `eval_strategy`: no
|
283 |
+
- `prediction_loss_only`: True
|
284 |
+
- `per_device_train_batch_size`: 400
|
285 |
+
- `per_device_eval_batch_size`: 400
|
286 |
+
- `per_gpu_train_batch_size`: None
|
287 |
+
- `per_gpu_eval_batch_size`: None
|
288 |
+
- `gradient_accumulation_steps`: 1
|
289 |
+
- `eval_accumulation_steps`: None
|
290 |
+
- `torch_empty_cache_steps`: None
|
291 |
+
- `learning_rate`: 5e-05
|
292 |
+
- `weight_decay`: 0.0
|
293 |
+
- `adam_beta1`: 0.9
|
294 |
+
- `adam_beta2`: 0.999
|
295 |
+
- `adam_epsilon`: 1e-08
|
296 |
+
- `max_grad_norm`: 1
|
297 |
+
- `num_train_epochs`: 5
|
298 |
+
- `max_steps`: -1
|
299 |
+
- `lr_scheduler_type`: linear
|
300 |
+
- `lr_scheduler_kwargs`: {}
|
301 |
+
- `warmup_ratio`: 0.0
|
302 |
+
- `warmup_steps`: 0
|
303 |
+
- `log_level`: passive
|
304 |
+
- `log_level_replica`: warning
|
305 |
+
- `log_on_each_node`: True
|
306 |
+
- `logging_nan_inf_filter`: True
|
307 |
+
- `save_safetensors`: True
|
308 |
+
- `save_on_each_node`: False
|
309 |
+
- `save_only_model`: False
|
310 |
+
- `restore_callback_states_from_checkpoint`: False
|
311 |
+
- `no_cuda`: False
|
312 |
+
- `use_cpu`: False
|
313 |
+
- `use_mps_device`: False
|
314 |
+
- `seed`: 42
|
315 |
+
- `data_seed`: None
|
316 |
+
- `jit_mode_eval`: False
|
317 |
+
- `use_ipex`: False
|
318 |
+
- `bf16`: False
|
319 |
+
- `fp16`: True
|
320 |
+
- `fp16_opt_level`: O1
|
321 |
+
- `half_precision_backend`: auto
|
322 |
+
- `bf16_full_eval`: False
|
323 |
+
- `fp16_full_eval`: False
|
324 |
+
- `tf32`: None
|
325 |
+
- `local_rank`: 0
|
326 |
+
- `ddp_backend`: None
|
327 |
+
- `tpu_num_cores`: None
|
328 |
+
- `tpu_metrics_debug`: False
|
329 |
+
- `debug`: []
|
330 |
+
- `dataloader_drop_last`: False
|
331 |
+
- `dataloader_num_workers`: 0
|
332 |
+
- `dataloader_prefetch_factor`: None
|
333 |
+
- `past_index`: -1
|
334 |
+
- `disable_tqdm`: False
|
335 |
+
- `remove_unused_columns`: True
|
336 |
+
- `label_names`: None
|
337 |
+
- `load_best_model_at_end`: False
|
338 |
+
- `ignore_data_skip`: False
|
339 |
+
- `fsdp`: []
|
340 |
+
- `fsdp_min_num_params`: 0
|
341 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
342 |
+
- `tp_size`: 0
|
343 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
344 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
345 |
+
- `deepspeed`: None
|
346 |
+
- `label_smoothing_factor`: 0.0
|
347 |
+
- `optim`: adamw_torch
|
348 |
+
- `optim_args`: None
|
349 |
+
- `adafactor`: False
|
350 |
+
- `group_by_length`: False
|
351 |
+
- `length_column_name`: length
|
352 |
+
- `ddp_find_unused_parameters`: None
|
353 |
+
- `ddp_bucket_cap_mb`: None
|
354 |
+
- `ddp_broadcast_buffers`: False
|
355 |
+
- `dataloader_pin_memory`: True
|
356 |
+
- `dataloader_persistent_workers`: False
|
357 |
+
- `skip_memory_metrics`: True
|
358 |
+
- `use_legacy_prediction_loop`: False
|
359 |
+
- `push_to_hub`: False
|
360 |
+
- `resume_from_checkpoint`: None
|
361 |
+
- `hub_model_id`: None
|
362 |
+
- `hub_strategy`: every_save
|
363 |
+
- `hub_private_repo`: None
|
364 |
+
- `hub_always_push`: False
|
365 |
+
- `gradient_checkpointing`: False
|
366 |
+
- `gradient_checkpointing_kwargs`: None
|
367 |
+
- `include_inputs_for_metrics`: False
|
368 |
+
- `include_for_metrics`: []
|
369 |
+
- `eval_do_concat_batches`: True
|
370 |
+
- `fp16_backend`: auto
|
371 |
+
- `push_to_hub_model_id`: None
|
372 |
+
- `push_to_hub_organization`: None
|
373 |
+
- `mp_parameters`:
|
374 |
+
- `auto_find_batch_size`: False
|
375 |
+
- `full_determinism`: False
|
376 |
+
- `torchdynamo`: None
|
377 |
+
- `ray_scope`: last
|
378 |
+
- `ddp_timeout`: 1800
|
379 |
+
- `torch_compile`: False
|
380 |
+
- `torch_compile_backend`: None
|
381 |
+
- `torch_compile_mode`: None
|
382 |
+
- `include_tokens_per_second`: False
|
383 |
+
- `include_num_input_tokens_seen`: False
|
384 |
+
- `neftune_noise_alpha`: None
|
385 |
+
- `optim_target_modules`: None
|
386 |
+
- `batch_eval_metrics`: False
|
387 |
+
- `eval_on_start`: False
|
388 |
+
- `use_liger_kernel`: False
|
389 |
+
- `eval_use_gather_object`: False
|
390 |
+
- `average_tokens_across_devices`: False
|
391 |
+
- `prompts`: None
|
392 |
+
- `batch_sampler`: batch_sampler
|
393 |
+
- `multi_dataset_batch_sampler`: round_robin
|
394 |
+
|
395 |
+
</details>
|
396 |
+
|
397 |
+
### Training Logs
|
398 |
+
| Epoch | Step | Training Loss |
|
399 |
+
|:------:|:-----:|:-------------:|
|
400 |
+
| 0.1135 | 500 | 1.0064 |
|
401 |
+
| 0.2270 | 1000 | 0.1985 |
|
402 |
+
| 0.3405 | 1500 | 0.1802 |
|
403 |
+
| 0.4540 | 2000 | 0.1659 |
|
404 |
+
| 0.5675 | 2500 | 0.1583 |
|
405 |
+
| 0.6810 | 3000 | 0.153 |
|
406 |
+
| 0.7946 | 3500 | 0.1478 |
|
407 |
+
| 0.9081 | 4000 | 0.1425 |
|
408 |
+
| 1.0216 | 4500 | 0.132 |
|
409 |
+
| 1.1351 | 5000 | 0.097 |
|
410 |
+
| 1.2486 | 5500 | 0.1 |
|
411 |
+
| 1.3621 | 6000 | 0.0972 |
|
412 |
+
| 1.4756 | 6500 | 0.0958 |
|
413 |
+
| 1.5891 | 7000 | 0.0968 |
|
414 |
+
| 1.7026 | 7500 | 0.0945 |
|
415 |
+
| 1.8161 | 8000 | 0.0943 |
|
416 |
+
| 1.9296 | 8500 | 0.0938 |
|
417 |
+
| 2.0431 | 9000 | 0.0831 |
|
418 |
+
| 2.1566 | 9500 | 0.0634 |
|
419 |
+
| 2.2701 | 10000 | 0.0642 |
|
420 |
+
| 2.3837 | 10500 | 0.0639 |
|
421 |
+
| 2.4972 | 11000 | 0.0646 |
|
422 |
+
| 2.6107 | 11500 | 0.065 |
|
423 |
+
| 2.7242 | 12000 | 0.0637 |
|
424 |
+
| 2.8377 | 12500 | 0.062 |
|
425 |
+
| 2.9512 | 13000 | 0.0626 |
|
426 |
+
| 3.0647 | 13500 | 0.0522 |
|
427 |
+
| 3.1782 | 14000 | 0.0443 |
|
428 |
+
| 3.2917 | 14500 | 0.0435 |
|
429 |
+
| 3.4052 | 15000 | 0.0447 |
|
430 |
+
| 3.5187 | 15500 | 0.0441 |
|
431 |
+
| 3.6322 | 16000 | 0.045 |
|
432 |
+
| 3.7457 | 16500 | 0.0443 |
|
433 |
+
| 3.8593 | 17000 | 0.0441 |
|
434 |
+
| 3.9728 | 17500 | 0.0433 |
|
435 |
+
| 4.0863 | 18000 | 0.0368 |
|
436 |
+
| 4.1998 | 18500 | 0.0333 |
|
437 |
+
| 4.3133 | 19000 | 0.0332 |
|
438 |
+
| 4.4268 | 19500 | 0.0335 |
|
439 |
+
| 4.5403 | 20000 | 0.033 |
|
440 |
+
| 4.6538 | 20500 | 0.0334 |
|
441 |
+
| 4.7673 | 21000 | 0.0325 |
|
442 |
+
| 4.8808 | 21500 | 0.0342 |
|
443 |
+
| 4.9943 | 22000 | 0.0341 |
|
444 |
+
|
445 |
+
|
446 |
+
### Framework Versions
|
447 |
+
- Python: 3.11.12
|
448 |
+
- Sentence Transformers: 3.4.1
|
449 |
+
- Transformers: 4.51.3
|
450 |
+
- PyTorch: 2.6.0+cu124
|
451 |
+
- Accelerate: 1.5.2
|
452 |
+
- Datasets: 3.5.0
|
453 |
+
- Tokenizers: 0.21.1
|
454 |
+
|
455 |
+
## Citation
|
456 |
+
|
457 |
+
### BibTeX
|
458 |
+
|
459 |
+
#### Sentence Transformers
|
460 |
+
```bibtex
|
461 |
+
@inproceedings{reimers-2019-sentence-bert,
|
462 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
463 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
464 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
465 |
+
month = "11",
|
466 |
+
year = "2019",
|
467 |
+
publisher = "Association for Computational Linguistics",
|
468 |
+
url = "https://arxiv.org/abs/1908.10084",
|
469 |
+
}
|
470 |
+
```
|
471 |
+
|
472 |
+
#### MultipleNegativesRankingLoss
|
473 |
+
```bibtex
|
474 |
+
@misc{henderson2017efficient,
|
475 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
476 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
477 |
+
year={2017},
|
478 |
+
eprint={1705.00652},
|
479 |
+
archivePrefix={arXiv},
|
480 |
+
primaryClass={cs.CL}
|
481 |
+
}
|
482 |
+
```
|
483 |
+
|
484 |
+
<!--
|
485 |
+
## Glossary
|
486 |
+
|
487 |
+
*Clearly define terms in order to be accessible across audiences.*
|
488 |
+
-->
|
489 |
+
|
490 |
+
<!--
|
491 |
+
## Model Card Authors
|
492 |
+
|
493 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
494 |
+
-->
|
495 |
+
|
496 |
+
<!--
|
497 |
+
## Model Card Contact
|
498 |
+
|
499 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
500 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 50001,
|
3 |
+
"<mask>": 50003,
|
4 |
+
"<s>": 50000,
|
5 |
+
"<unk>": 50002
|
6 |
+
}
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ModernBertModel"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"bos_token_id": 50000,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "cls",
|
13 |
+
"cls_token_id": 50281,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50001,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"hidden_activation": "gelu",
|
21 |
+
"hidden_dropout_prob": 0.1,
|
22 |
+
"hidden_size": 512,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 2048,
|
26 |
+
"local_attention": 128,
|
27 |
+
"local_attention_rope_theta": 10000,
|
28 |
+
"local_attention_window": 128,
|
29 |
+
"local_rope_theta": 10000.0,
|
30 |
+
"max_position_embeddings": 8192,
|
31 |
+
"mlp_bias": false,
|
32 |
+
"mlp_dropout": 0.0,
|
33 |
+
"model_type": "modernbert",
|
34 |
+
"norm_bias": false,
|
35 |
+
"norm_eps": 1e-05,
|
36 |
+
"num_attention_heads": 8,
|
37 |
+
"num_hidden_layers": 12,
|
38 |
+
"pad_token_id": 0,
|
39 |
+
"repad_logits_with_grad": false,
|
40 |
+
"rope_theta": 160000,
|
41 |
+
"sep_token_id": 50282,
|
42 |
+
"sparse_pred_ignore_index": -100,
|
43 |
+
"sparse_prediction": false,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.51.3",
|
46 |
+
"type_vocab_size": 2,
|
47 |
+
"vocab_size": 50004
|
48 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.51.3",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c842f6cfef5c72cfe06132e4b74d012ab7573b6be2d78a0709c7aaf5f30998c9
|
3 |
+
size 303793176
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 1024,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "[UNK]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "[CLS]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "[SEP]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"50000": {
|
45 |
+
"content": "<s>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"50001": {
|
53 |
+
"content": "</s>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"50002": {
|
61 |
+
"content": "<unk>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"50003": {
|
69 |
+
"content": "<mask>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"bos_token": "<s>",
|
78 |
+
"clean_up_tokenization_spaces": false,
|
79 |
+
"cls_token": "<s>",
|
80 |
+
"eos_token": "</s>",
|
81 |
+
"errors": "replace",
|
82 |
+
"extra_special_tokens": {},
|
83 |
+
"mask_token": "<mask>",
|
84 |
+
"max_length": null,
|
85 |
+
"model_max_length": 1000000000000000019884624838656,
|
86 |
+
"pad_to_multiple_of": null,
|
87 |
+
"pad_token": "[PAD]",
|
88 |
+
"pad_token_type_id": 0,
|
89 |
+
"padding_side": "right",
|
90 |
+
"sep_token": "</s>",
|
91 |
+
"stride": 0,
|
92 |
+
"tokenizer_class": "RobertaTokenizer",
|
93 |
+
"trim_offsets": true,
|
94 |
+
"truncation_side": "right",
|
95 |
+
"truncation_strategy": "longest_first",
|
96 |
+
"unk_token": "<unk>"
|
97 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|