Training in progress, epoch 0
Browse files- 1_Pooling/config.json +2 -2
- README.md +160 -159
- model.safetensors +1 -1
- modules.json +6 -0
- sentence_bert_config.json +1 -1
- training_args.bin +1 -1
1_Pooling/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"word_embedding_dimension": 768,
|
3 |
-
"pooling_mode_cls_token":
|
4 |
-
"pooling_mode_mean_tokens":
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
"pooling_mode_weightedmean_tokens": false,
|
|
|
1 |
{
|
2 |
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
"pooling_mode_weightedmean_tokens": false,
|
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
- dataset_size:150
|
11 |
- loss:MatryoshkaLoss
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
-
base_model:
|
14 |
widget:
|
15 |
- source_sentence: What services does Techchefz Digital offer for AI adoption?
|
16 |
sentences:
|
@@ -34,7 +34,7 @@ widget:
|
|
34 |
Getting started is easy. Contact us through our website. We''ll schedule a consultation
|
35 |
to discuss your needs, evaluate your current infrastructure, and propose a customized
|
36 |
DevOps solution designed to achieve your goals.'
|
37 |
-
- source_sentence:
|
38 |
sentences:
|
39 |
- 'How do we do Custom Development ?
|
40 |
|
@@ -105,7 +105,7 @@ widget:
|
|
105 |
\ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
|
106 |
\ team to solve your hiring challenges with our easy to deploy staff augmentation\
|
107 |
\ offerings.\""
|
108 |
-
- source_sentence:
|
109 |
sentences:
|
110 |
- 'Why do we need Microservices ?
|
111 |
|
@@ -123,38 +123,6 @@ widget:
|
|
123 |
Technology Diversity
|
124 |
|
125 |
Continuous Delivery'
|
126 |
-
- Our AI/ML services pave the way for transformative change across industries, embodying
|
127 |
-
a client-focused approach that integrates seamlessly with human-centric innovation.
|
128 |
-
Our collaborative teams are dedicated to fostering growth, leveraging data, and
|
129 |
-
harnessing the predictive power of artificial intelligence to forge the next wave
|
130 |
-
of software excellence. We don't just deliver AI; we deliver the future.
|
131 |
-
- 'What makes your DevOps solutions stand out from the competition?
|
132 |
-
|
133 |
-
Our DevOps solutions stand out due to our personalized approach, extensive expertise,
|
134 |
-
and commitment to innovation. We focus on delivering measurable results, such
|
135 |
-
as reduced deployment times, improved system reliability, and enhanced security,
|
136 |
-
ensuring you get the maximum benefit from our services.'
|
137 |
-
- source_sentence: How did TechChefz evolve from its early days?
|
138 |
-
sentences:
|
139 |
-
- 'Our Solutions
|
140 |
-
|
141 |
-
Strategy & Digital Transformation
|
142 |
-
|
143 |
-
Innovate via digital transformation, modernize tech, craft product strategies,
|
144 |
-
enhance customer experiences, optimize data analytics, transition to cloud for
|
145 |
-
growth and efficiency
|
146 |
-
|
147 |
-
|
148 |
-
Product Engineering & Custom Development
|
149 |
-
|
150 |
-
Providing product development, enterprise web and mobile development, microservices
|
151 |
-
integrations, quality engineering, and application support services to drive innovation
|
152 |
-
and enhance operational efficiency.'
|
153 |
-
- 'In what ways can machine learning optimize our operations?
|
154 |
-
|
155 |
-
Machine learning algorithms can analyze operational data to identify inefficiencies,
|
156 |
-
predict maintenance needs, optimize supply chains, and automate repetitive tasks,
|
157 |
-
significantly improving operational efficiency and reducing costs.'
|
158 |
- 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
|
159 |
decision to depart from the corporate ladder in December 2016. Fueled by a clear
|
160 |
vision to revolutionize the digital landscape, Mayank set out to leverage the
|
@@ -177,7 +145,42 @@ widget:
|
|
177 |
and exponential growth. His leadership has been instrumental in shaping TechChefz
|
178 |
Digital into a leading force in the digital transformation arena, inspiring a
|
179 |
culture of innovation and excellence that continues to propel the company forward.'
|
180 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
sentences:
|
182 |
- " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
|
183 |
\ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
|
@@ -190,6 +193,12 @@ widget:
|
|
190 |
\ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
|
191 |
\ your business-critical applications, data, and IT workloads, along with Application\
|
192 |
\ maintenance and operations\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
- 'Introducing the world of General Insurance Firm
|
194 |
|
195 |
In this project, we implemented Digital Solution and Implementation with Headless
|
@@ -213,15 +222,6 @@ widget:
|
|
213 |
& Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
|
214 |
buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
|
215 |
campaign pages'
|
216 |
-
- 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
|
217 |
-
for Complex Problems and delieverd a comprehensive Website Development, Production
|
218 |
-
Support & Managed Services, we optimized customer journeys, integrate analytics,
|
219 |
-
CRM, ERP, and third-party applications, and implement cutting-edge technologies
|
220 |
-
for enhanced performance and efficiency
|
221 |
-
|
222 |
-
and achievied 200% Reduction in operational time & effort managing content & experience,
|
223 |
-
70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
|
224 |
-
& Retention'
|
225 |
pipeline_tag: sentence-similarity
|
226 |
library_name: sentence-transformers
|
227 |
metrics:
|
@@ -251,49 +251,49 @@ model-index:
|
|
251 |
type: dim_768
|
252 |
metrics:
|
253 |
- type: cosine_accuracy@1
|
254 |
-
value: 0.
|
255 |
name: Cosine Accuracy@1
|
256 |
- type: cosine_accuracy@3
|
257 |
-
value: 0.
|
258 |
name: Cosine Accuracy@3
|
259 |
- type: cosine_accuracy@5
|
260 |
-
value: 0.
|
261 |
name: Cosine Accuracy@5
|
262 |
- type: cosine_accuracy@10
|
263 |
value: 0.6933333333333334
|
264 |
name: Cosine Accuracy@10
|
265 |
- type: cosine_precision@1
|
266 |
-
value: 0.
|
267 |
name: Cosine Precision@1
|
268 |
- type: cosine_precision@3
|
269 |
-
value: 0.
|
270 |
name: Cosine Precision@3
|
271 |
- type: cosine_precision@5
|
272 |
-
value: 0.
|
273 |
name: Cosine Precision@5
|
274 |
- type: cosine_precision@10
|
275 |
value: 0.06933333333333333
|
276 |
name: Cosine Precision@10
|
277 |
- type: cosine_recall@1
|
278 |
-
value: 0.
|
279 |
name: Cosine Recall@1
|
280 |
- type: cosine_recall@3
|
281 |
-
value: 0.
|
282 |
name: Cosine Recall@3
|
283 |
- type: cosine_recall@5
|
284 |
-
value: 0.
|
285 |
name: Cosine Recall@5
|
286 |
- type: cosine_recall@10
|
287 |
value: 0.6933333333333334
|
288 |
name: Cosine Recall@10
|
289 |
- type: cosine_ndcg@10
|
290 |
-
value: 0.
|
291 |
name: Cosine Ndcg@10
|
292 |
- type: cosine_mrr@10
|
293 |
-
value: 0.
|
294 |
name: Cosine Mrr@10
|
295 |
- type: cosine_map@100
|
296 |
-
value: 0.
|
297 |
name: Cosine Map@100
|
298 |
- task:
|
299 |
type: information-retrieval
|
@@ -303,49 +303,49 @@ model-index:
|
|
303 |
type: dim_512
|
304 |
metrics:
|
305 |
- type: cosine_accuracy@1
|
306 |
-
value: 0.
|
307 |
name: Cosine Accuracy@1
|
308 |
- type: cosine_accuracy@3
|
309 |
-
value: 0.
|
310 |
name: Cosine Accuracy@3
|
311 |
- type: cosine_accuracy@5
|
312 |
-
value: 0.
|
313 |
name: Cosine Accuracy@5
|
314 |
- type: cosine_accuracy@10
|
315 |
-
value: 0.
|
316 |
name: Cosine Accuracy@10
|
317 |
- type: cosine_precision@1
|
318 |
-
value: 0.
|
319 |
name: Cosine Precision@1
|
320 |
- type: cosine_precision@3
|
321 |
-
value: 0.
|
322 |
name: Cosine Precision@3
|
323 |
- type: cosine_precision@5
|
324 |
-
value: 0.
|
325 |
name: Cosine Precision@5
|
326 |
- type: cosine_precision@10
|
327 |
-
value: 0.
|
328 |
name: Cosine Precision@10
|
329 |
- type: cosine_recall@1
|
330 |
-
value: 0.
|
331 |
name: Cosine Recall@1
|
332 |
- type: cosine_recall@3
|
333 |
-
value: 0.
|
334 |
name: Cosine Recall@3
|
335 |
- type: cosine_recall@5
|
336 |
-
value: 0.
|
337 |
name: Cosine Recall@5
|
338 |
- type: cosine_recall@10
|
339 |
-
value: 0.
|
340 |
name: Cosine Recall@10
|
341 |
- type: cosine_ndcg@10
|
342 |
-
value: 0.
|
343 |
name: Cosine Ndcg@10
|
344 |
- type: cosine_mrr@10
|
345 |
-
value: 0.
|
346 |
name: Cosine Mrr@10
|
347 |
- type: cosine_map@100
|
348 |
-
value: 0.
|
349 |
name: Cosine Map@100
|
350 |
- task:
|
351 |
type: information-retrieval
|
@@ -355,49 +355,49 @@ model-index:
|
|
355 |
type: dim_256
|
356 |
metrics:
|
357 |
- type: cosine_accuracy@1
|
358 |
-
value: 0.
|
359 |
name: Cosine Accuracy@1
|
360 |
- type: cosine_accuracy@3
|
361 |
-
value: 0.
|
362 |
name: Cosine Accuracy@3
|
363 |
- type: cosine_accuracy@5
|
364 |
-
value: 0.
|
365 |
name: Cosine Accuracy@5
|
366 |
- type: cosine_accuracy@10
|
367 |
-
value: 0.
|
368 |
name: Cosine Accuracy@10
|
369 |
- type: cosine_precision@1
|
370 |
-
value: 0.
|
371 |
name: Cosine Precision@1
|
372 |
- type: cosine_precision@3
|
373 |
-
value: 0.
|
374 |
name: Cosine Precision@3
|
375 |
- type: cosine_precision@5
|
376 |
-
value: 0.
|
377 |
name: Cosine Precision@5
|
378 |
- type: cosine_precision@10
|
379 |
-
value: 0.
|
380 |
name: Cosine Precision@10
|
381 |
- type: cosine_recall@1
|
382 |
-
value: 0.
|
383 |
name: Cosine Recall@1
|
384 |
- type: cosine_recall@3
|
385 |
-
value: 0.
|
386 |
name: Cosine Recall@3
|
387 |
- type: cosine_recall@5
|
388 |
-
value: 0.
|
389 |
name: Cosine Recall@5
|
390 |
- type: cosine_recall@10
|
391 |
-
value: 0.
|
392 |
name: Cosine Recall@10
|
393 |
- type: cosine_ndcg@10
|
394 |
-
value: 0.
|
395 |
name: Cosine Ndcg@10
|
396 |
- type: cosine_mrr@10
|
397 |
-
value: 0.
|
398 |
name: Cosine Mrr@10
|
399 |
- type: cosine_map@100
|
400 |
-
value: 0.
|
401 |
name: Cosine Map@100
|
402 |
- task:
|
403 |
type: information-retrieval
|
@@ -407,49 +407,49 @@ model-index:
|
|
407 |
type: dim_128
|
408 |
metrics:
|
409 |
- type: cosine_accuracy@1
|
410 |
-
value: 0.
|
411 |
name: Cosine Accuracy@1
|
412 |
- type: cosine_accuracy@3
|
413 |
-
value: 0.
|
414 |
name: Cosine Accuracy@3
|
415 |
- type: cosine_accuracy@5
|
416 |
-
value: 0.
|
417 |
name: Cosine Accuracy@5
|
418 |
- type: cosine_accuracy@10
|
419 |
-
value: 0.
|
420 |
name: Cosine Accuracy@10
|
421 |
- type: cosine_precision@1
|
422 |
-
value: 0.
|
423 |
name: Cosine Precision@1
|
424 |
- type: cosine_precision@3
|
425 |
-
value: 0.
|
426 |
name: Cosine Precision@3
|
427 |
- type: cosine_precision@5
|
428 |
-
value: 0.
|
429 |
name: Cosine Precision@5
|
430 |
- type: cosine_precision@10
|
431 |
-
value: 0.
|
432 |
name: Cosine Precision@10
|
433 |
- type: cosine_recall@1
|
434 |
-
value: 0.
|
435 |
name: Cosine Recall@1
|
436 |
- type: cosine_recall@3
|
437 |
-
value: 0.
|
438 |
name: Cosine Recall@3
|
439 |
- type: cosine_recall@5
|
440 |
-
value: 0.
|
441 |
name: Cosine Recall@5
|
442 |
- type: cosine_recall@10
|
443 |
-
value: 0.
|
444 |
name: Cosine Recall@10
|
445 |
- type: cosine_ndcg@10
|
446 |
-
value: 0.
|
447 |
name: Cosine Ndcg@10
|
448 |
- type: cosine_mrr@10
|
449 |
-
value: 0.
|
450 |
name: Cosine Mrr@10
|
451 |
- type: cosine_map@100
|
452 |
-
value: 0.
|
453 |
name: Cosine Map@100
|
454 |
- task:
|
455 |
type: information-retrieval
|
@@ -459,61 +459,61 @@ model-index:
|
|
459 |
type: dim_64
|
460 |
metrics:
|
461 |
- type: cosine_accuracy@1
|
462 |
-
value: 0.
|
463 |
name: Cosine Accuracy@1
|
464 |
- type: cosine_accuracy@3
|
465 |
-
value: 0.
|
466 |
name: Cosine Accuracy@3
|
467 |
- type: cosine_accuracy@5
|
468 |
-
value: 0.
|
469 |
name: Cosine Accuracy@5
|
470 |
- type: cosine_accuracy@10
|
471 |
-
value: 0.
|
472 |
name: Cosine Accuracy@10
|
473 |
- type: cosine_precision@1
|
474 |
-
value: 0.
|
475 |
name: Cosine Precision@1
|
476 |
- type: cosine_precision@3
|
477 |
-
value: 0.
|
478 |
name: Cosine Precision@3
|
479 |
- type: cosine_precision@5
|
480 |
-
value: 0.
|
481 |
name: Cosine Precision@5
|
482 |
- type: cosine_precision@10
|
483 |
-
value: 0.
|
484 |
name: Cosine Precision@10
|
485 |
- type: cosine_recall@1
|
486 |
-
value: 0.
|
487 |
name: Cosine Recall@1
|
488 |
- type: cosine_recall@3
|
489 |
-
value: 0.
|
490 |
name: Cosine Recall@3
|
491 |
- type: cosine_recall@5
|
492 |
-
value: 0.
|
493 |
name: Cosine Recall@5
|
494 |
- type: cosine_recall@10
|
495 |
-
value: 0.
|
496 |
name: Cosine Recall@10
|
497 |
- type: cosine_ndcg@10
|
498 |
-
value: 0.
|
499 |
name: Cosine Ndcg@10
|
500 |
- type: cosine_mrr@10
|
501 |
-
value: 0.
|
502 |
name: Cosine Mrr@10
|
503 |
- type: cosine_map@100
|
504 |
-
value: 0.
|
505 |
name: Cosine Map@100
|
506 |
---
|
507 |
|
508 |
# BGE base Financial Matryoshka
|
509 |
|
510 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [
|
511 |
|
512 |
## Model Details
|
513 |
|
514 |
### Model Description
|
515 |
- **Model Type:** Sentence Transformer
|
516 |
-
- **Base model:** [
|
517 |
- **Maximum Sequence Length:** 512 tokens
|
518 |
- **Output Dimensionality:** 768 dimensions
|
519 |
- **Similarity Function:** Cosine Similarity
|
@@ -531,8 +531,9 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
|
|
531 |
|
532 |
```
|
533 |
SentenceTransformer(
|
534 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case':
|
535 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token':
|
|
|
536 |
)
|
537 |
```
|
538 |
|
@@ -551,12 +552,12 @@ Then you can load this model and run inference.
|
|
551 |
from sentence_transformers import SentenceTransformer
|
552 |
|
553 |
# Download from the 🤗 Hub
|
554 |
-
model = SentenceTransformer("Shashwat13333/
|
555 |
# Run inference
|
556 |
sentences = [
|
557 |
-
'What
|
558 |
' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
|
559 |
-
'
|
560 |
]
|
561 |
embeddings = model.encode(sentences)
|
562 |
print(embeddings.shape)
|
@@ -601,23 +602,23 @@ You can finetune this model on your own dataset.
|
|
601 |
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
602 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
603 |
|
604 |
-
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64
|
605 |
-
|
606 |
-
| cosine_accuracy@1 | 0.
|
607 |
-
| cosine_accuracy@3 | 0.
|
608 |
-
| cosine_accuracy@5 | 0.
|
609 |
-
| cosine_accuracy@10 | 0.6933 | 0.
|
610 |
-
| cosine_precision@1 | 0.
|
611 |
-
| cosine_precision@3 | 0.
|
612 |
-
| cosine_precision@5 | 0.
|
613 |
-
| cosine_precision@10 | 0.0693 | 0.
|
614 |
-
| cosine_recall@1 | 0.
|
615 |
-
| cosine_recall@3 | 0.
|
616 |
-
| cosine_recall@5 | 0.
|
617 |
-
| cosine_recall@10 | 0.6933 | 0.
|
618 |
-
| **cosine_ndcg@10** | **0.
|
619 |
-
| cosine_mrr@10 | 0.
|
620 |
-
| cosine_map@100 | 0.
|
621 |
|
622 |
<!--
|
623 |
## Bias, Risks and Limitations
|
@@ -641,10 +642,10 @@ You can finetune this model on your own dataset.
|
|
641 |
* Size: 150 training samples
|
642 |
* Columns: <code>anchor</code> and <code>positive</code>
|
643 |
* Approximate statistics based on the first 150 samples:
|
644 |
-
| | anchor
|
645 |
-
|
646 |
-
| type | string
|
647 |
-
| details | <ul><li>min:
|
648 |
* Samples:
|
649 |
| anchor | positive |
|
650 |
|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
@@ -687,8 +688,8 @@ You can finetune this model on your own dataset.
|
|
687 |
- `load_best_model_at_end`: True
|
688 |
- `optim`: adamw_torch_fused
|
689 |
- `push_to_hub`: True
|
690 |
-
- `hub_model_id`: Shashwat13333/
|
691 |
-
- `push_to_hub_model_id`:
|
692 |
- `batch_sampler`: no_duplicates
|
693 |
|
694 |
#### All Hyperparameters
|
@@ -774,7 +775,7 @@ You can finetune this model on your own dataset.
|
|
774 |
- `use_legacy_prediction_loop`: False
|
775 |
- `push_to_hub`: True
|
776 |
- `resume_from_checkpoint`: None
|
777 |
-
- `hub_model_id`: Shashwat13333/
|
778 |
- `hub_strategy`: every_save
|
779 |
- `hub_private_repo`: None
|
780 |
- `hub_always_push`: False
|
@@ -784,7 +785,7 @@ You can finetune this model on your own dataset.
|
|
784 |
- `include_for_metrics`: []
|
785 |
- `eval_do_concat_batches`: True
|
786 |
- `fp16_backend`: auto
|
787 |
-
- `push_to_hub_model_id`:
|
788 |
- `push_to_hub_organization`: None
|
789 |
- `mp_parameters`:
|
790 |
- `auto_find_batch_size`: False
|
@@ -813,16 +814,16 @@ You can finetune this model on your own dataset.
|
|
813 |
</details>
|
814 |
|
815 |
### Training Logs
|
816 |
-
| Epoch | Step
|
817 |
-
|
818 |
-
| 0.2105 | 1
|
819 |
-
|
|
820 |
-
| 1.2105 | 5
|
821 |
-
| 1.8421 | 8
|
822 |
-
| 2.4211 | 10
|
823 |
-
| 2.8421 | 12
|
824 |
-
| 3.6316 | 15
|
825 |
-
| 3.8421
|
826 |
|
827 |
* The bold row denotes the saved checkpoint.
|
828 |
|
|
|
10 |
- dataset_size:150
|
11 |
- loss:MatryoshkaLoss
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
+
base_model: BAAI/bge-base-en-v1.5
|
14 |
widget:
|
15 |
- source_sentence: What services does Techchefz Digital offer for AI adoption?
|
16 |
sentences:
|
|
|
34 |
Getting started is easy. Contact us through our website. We''ll schedule a consultation
|
35 |
to discuss your needs, evaluate your current infrastructure, and propose a customized
|
36 |
DevOps solution designed to achieve your goals.'
|
37 |
+
- source_sentence: Hav you made any services for schools and students?
|
38 |
sentences:
|
39 |
- 'How do we do Custom Development ?
|
40 |
|
|
|
105 |
\ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
|
106 |
\ team to solve your hiring challenges with our easy to deploy staff augmentation\
|
107 |
\ offerings.\""
|
108 |
+
- source_sentence: How did TechChefz evolve from its early days?
|
109 |
sentences:
|
110 |
- 'Why do we need Microservices ?
|
111 |
|
|
|
123 |
Technology Diversity
|
124 |
|
125 |
Continuous Delivery'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
- 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
|
127 |
decision to depart from the corporate ladder in December 2016. Fueled by a clear
|
128 |
vision to revolutionize the digital landscape, Mayank set out to leverage the
|
|
|
145 |
and exponential growth. His leadership has been instrumental in shaping TechChefz
|
146 |
Digital into a leading force in the digital transformation arena, inspiring a
|
147 |
culture of innovation and excellence that continues to propel the company forward.'
|
148 |
+
- 'In what ways can machine learning optimize our operations?
|
149 |
+
|
150 |
+
Machine learning algorithms can analyze operational data to identify inefficiencies,
|
151 |
+
predict maintenance needs, optimize supply chains, and automate repetitive tasks,
|
152 |
+
significantly improving operational efficiency and reducing costs.'
|
153 |
+
- source_sentence: What kind of data do you leverage for AI solutions?
|
154 |
+
sentences:
|
155 |
+
- 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
|
156 |
+
for Complex Problems and delieverd a comprehensive Website Development, Production
|
157 |
+
Support & Managed Services, we optimized customer journeys, integrate analytics,
|
158 |
+
CRM, ERP, and third-party applications, and implement cutting-edge technologies
|
159 |
+
for enhanced performance and efficiency
|
160 |
+
|
161 |
+
and achievied 200% Reduction in operational time & effort managing content & experience,
|
162 |
+
70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
|
163 |
+
& Retention'
|
164 |
+
- 'Our Solutions
|
165 |
+
|
166 |
+
Strategy & Digital Transformation
|
167 |
+
|
168 |
+
Innovate via digital transformation, modernize tech, craft product strategies,
|
169 |
+
enhance customer experiences, optimize data analytics, transition to cloud for
|
170 |
+
growth and efficiency
|
171 |
+
|
172 |
+
|
173 |
+
Product Engineering & Custom Development
|
174 |
+
|
175 |
+
Providing product development, enterprise web and mobile development, microservices
|
176 |
+
integrations, quality engineering, and application support services to drive innovation
|
177 |
+
and enhance operational efficiency.'
|
178 |
+
- Our AI/ML services pave the way for transformative change across industries, embodying
|
179 |
+
a client-focused approach that integrates seamlessly with human-centric innovation.
|
180 |
+
Our collaborative teams are dedicated to fostering growth, leveraging data, and
|
181 |
+
harnessing the predictive power of artificial intelligence to forge the next wave
|
182 |
+
of software excellence. We don't just deliver AI; we deliver the future.
|
183 |
+
- source_sentence: What managed services does TechChefz provide ?
|
184 |
sentences:
|
185 |
- " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
|
186 |
\ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
|
|
|
193 |
\ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
|
194 |
\ your business-critical applications, data, and IT workloads, along with Application\
|
195 |
\ maintenance and operations\n"
|
196 |
+
- 'What makes your DevOps solutions stand out from the competition?
|
197 |
+
|
198 |
+
Our DevOps solutions stand out due to our personalized approach, extensive expertise,
|
199 |
+
and commitment to innovation. We focus on delivering measurable results, such
|
200 |
+
as reduced deployment times, improved system reliability, and enhanced security,
|
201 |
+
ensuring you get the maximum benefit from our services.'
|
202 |
- 'Introducing the world of General Insurance Firm
|
203 |
|
204 |
In this project, we implemented Digital Solution and Implementation with Headless
|
|
|
222 |
& Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
|
223 |
buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
|
224 |
campaign pages'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
pipeline_tag: sentence-similarity
|
226 |
library_name: sentence-transformers
|
227 |
metrics:
|
|
|
251 |
type: dim_768
|
252 |
metrics:
|
253 |
- type: cosine_accuracy@1
|
254 |
+
value: 0.17333333333333334
|
255 |
name: Cosine Accuracy@1
|
256 |
- type: cosine_accuracy@3
|
257 |
+
value: 0.5466666666666666
|
258 |
name: Cosine Accuracy@3
|
259 |
- type: cosine_accuracy@5
|
260 |
+
value: 0.6
|
261 |
name: Cosine Accuracy@5
|
262 |
- type: cosine_accuracy@10
|
263 |
value: 0.6933333333333334
|
264 |
name: Cosine Accuracy@10
|
265 |
- type: cosine_precision@1
|
266 |
+
value: 0.17333333333333334
|
267 |
name: Cosine Precision@1
|
268 |
- type: cosine_precision@3
|
269 |
+
value: 0.1822222222222222
|
270 |
name: Cosine Precision@3
|
271 |
- type: cosine_precision@5
|
272 |
+
value: 0.12
|
273 |
name: Cosine Precision@5
|
274 |
- type: cosine_precision@10
|
275 |
value: 0.06933333333333333
|
276 |
name: Cosine Precision@10
|
277 |
- type: cosine_recall@1
|
278 |
+
value: 0.17333333333333334
|
279 |
name: Cosine Recall@1
|
280 |
- type: cosine_recall@3
|
281 |
+
value: 0.5466666666666666
|
282 |
name: Cosine Recall@3
|
283 |
- type: cosine_recall@5
|
284 |
+
value: 0.6
|
285 |
name: Cosine Recall@5
|
286 |
- type: cosine_recall@10
|
287 |
value: 0.6933333333333334
|
288 |
name: Cosine Recall@10
|
289 |
- type: cosine_ndcg@10
|
290 |
+
value: 0.43705488094312567
|
291 |
name: Cosine Ndcg@10
|
292 |
- type: cosine_mrr@10
|
293 |
+
value: 0.3539576719576719
|
294 |
name: Cosine Mrr@10
|
295 |
- type: cosine_map@100
|
296 |
+
value: 0.3663753684578632
|
297 |
name: Cosine Map@100
|
298 |
- task:
|
299 |
type: information-retrieval
|
|
|
303 |
type: dim_512
|
304 |
metrics:
|
305 |
- type: cosine_accuracy@1
|
306 |
+
value: 0.17333333333333334
|
307 |
name: Cosine Accuracy@1
|
308 |
- type: cosine_accuracy@3
|
309 |
+
value: 0.5333333333333333
|
310 |
name: Cosine Accuracy@3
|
311 |
- type: cosine_accuracy@5
|
312 |
+
value: 0.6266666666666667
|
313 |
name: Cosine Accuracy@5
|
314 |
- type: cosine_accuracy@10
|
315 |
+
value: 0.6933333333333334
|
316 |
name: Cosine Accuracy@10
|
317 |
- type: cosine_precision@1
|
318 |
+
value: 0.17333333333333334
|
319 |
name: Cosine Precision@1
|
320 |
- type: cosine_precision@3
|
321 |
+
value: 0.17777777777777776
|
322 |
name: Cosine Precision@3
|
323 |
- type: cosine_precision@5
|
324 |
+
value: 0.12533333333333332
|
325 |
name: Cosine Precision@5
|
326 |
- type: cosine_precision@10
|
327 |
+
value: 0.06933333333333333
|
328 |
name: Cosine Precision@10
|
329 |
- type: cosine_recall@1
|
330 |
+
value: 0.17333333333333334
|
331 |
name: Cosine Recall@1
|
332 |
- type: cosine_recall@3
|
333 |
+
value: 0.5333333333333333
|
334 |
name: Cosine Recall@3
|
335 |
- type: cosine_recall@5
|
336 |
+
value: 0.6266666666666667
|
337 |
name: Cosine Recall@5
|
338 |
- type: cosine_recall@10
|
339 |
+
value: 0.6933333333333334
|
340 |
name: Cosine Recall@10
|
341 |
- type: cosine_ndcg@10
|
342 |
+
value: 0.43324477959330543
|
343 |
name: Cosine Ndcg@10
|
344 |
- type: cosine_mrr@10
|
345 |
+
value: 0.3495185185185184
|
346 |
name: Cosine Mrr@10
|
347 |
- type: cosine_map@100
|
348 |
+
value: 0.359896266319179
|
349 |
name: Cosine Map@100
|
350 |
- task:
|
351 |
type: information-retrieval
|
|
|
355 |
type: dim_256
|
356 |
metrics:
|
357 |
- type: cosine_accuracy@1
|
358 |
+
value: 0.22666666666666666
|
359 |
name: Cosine Accuracy@1
|
360 |
- type: cosine_accuracy@3
|
361 |
+
value: 0.49333333333333335
|
362 |
name: Cosine Accuracy@3
|
363 |
- type: cosine_accuracy@5
|
364 |
+
value: 0.56
|
365 |
name: Cosine Accuracy@5
|
366 |
- type: cosine_accuracy@10
|
367 |
+
value: 0.68
|
368 |
name: Cosine Accuracy@10
|
369 |
- type: cosine_precision@1
|
370 |
+
value: 0.22666666666666666
|
371 |
name: Cosine Precision@1
|
372 |
- type: cosine_precision@3
|
373 |
+
value: 0.16444444444444445
|
374 |
name: Cosine Precision@3
|
375 |
- type: cosine_precision@5
|
376 |
+
value: 0.11199999999999997
|
377 |
name: Cosine Precision@5
|
378 |
- type: cosine_precision@10
|
379 |
+
value: 0.06799999999999998
|
380 |
name: Cosine Precision@10
|
381 |
- type: cosine_recall@1
|
382 |
+
value: 0.22666666666666666
|
383 |
name: Cosine Recall@1
|
384 |
- type: cosine_recall@3
|
385 |
+
value: 0.49333333333333335
|
386 |
name: Cosine Recall@3
|
387 |
- type: cosine_recall@5
|
388 |
+
value: 0.56
|
389 |
name: Cosine Recall@5
|
390 |
- type: cosine_recall@10
|
391 |
+
value: 0.68
|
392 |
name: Cosine Recall@10
|
393 |
- type: cosine_ndcg@10
|
394 |
+
value: 0.4383628839300849
|
395 |
name: Cosine Ndcg@10
|
396 |
- type: cosine_mrr@10
|
397 |
+
value: 0.36210582010582004
|
398 |
name: Cosine Mrr@10
|
399 |
- type: cosine_map@100
|
400 |
+
value: 0.3731640827722892
|
401 |
name: Cosine Map@100
|
402 |
- task:
|
403 |
type: information-retrieval
|
|
|
407 |
type: dim_128
|
408 |
metrics:
|
409 |
- type: cosine_accuracy@1
|
410 |
+
value: 0.24
|
411 |
name: Cosine Accuracy@1
|
412 |
- type: cosine_accuracy@3
|
413 |
+
value: 0.48
|
414 |
name: Cosine Accuracy@3
|
415 |
- type: cosine_accuracy@5
|
416 |
+
value: 0.56
|
417 |
name: Cosine Accuracy@5
|
418 |
- type: cosine_accuracy@10
|
419 |
+
value: 0.6933333333333334
|
420 |
name: Cosine Accuracy@10
|
421 |
- type: cosine_precision@1
|
422 |
+
value: 0.24
|
423 |
name: Cosine Precision@1
|
424 |
- type: cosine_precision@3
|
425 |
+
value: 0.16
|
426 |
name: Cosine Precision@3
|
427 |
- type: cosine_precision@5
|
428 |
+
value: 0.11199999999999997
|
429 |
name: Cosine Precision@5
|
430 |
- type: cosine_precision@10
|
431 |
+
value: 0.06933333333333332
|
432 |
name: Cosine Precision@10
|
433 |
- type: cosine_recall@1
|
434 |
+
value: 0.24
|
435 |
name: Cosine Recall@1
|
436 |
- type: cosine_recall@3
|
437 |
+
value: 0.48
|
438 |
name: Cosine Recall@3
|
439 |
- type: cosine_recall@5
|
440 |
+
value: 0.56
|
441 |
name: Cosine Recall@5
|
442 |
- type: cosine_recall@10
|
443 |
+
value: 0.6933333333333334
|
444 |
name: Cosine Recall@10
|
445 |
- type: cosine_ndcg@10
|
446 |
+
value: 0.4443870388298522
|
447 |
name: Cosine Ndcg@10
|
448 |
- type: cosine_mrr@10
|
449 |
+
value: 0.36651322751322746
|
450 |
name: Cosine Mrr@10
|
451 |
- type: cosine_map@100
|
452 |
+
value: 0.37546675549059694
|
453 |
name: Cosine Map@100
|
454 |
- task:
|
455 |
type: information-retrieval
|
|
|
459 |
type: dim_64
|
460 |
metrics:
|
461 |
- type: cosine_accuracy@1
|
462 |
+
value: 0.08
|
463 |
name: Cosine Accuracy@1
|
464 |
- type: cosine_accuracy@3
|
465 |
+
value: 0.3466666666666667
|
466 |
name: Cosine Accuracy@3
|
467 |
- type: cosine_accuracy@5
|
468 |
+
value: 0.49333333333333335
|
469 |
name: Cosine Accuracy@5
|
470 |
- type: cosine_accuracy@10
|
471 |
+
value: 0.56
|
472 |
name: Cosine Accuracy@10
|
473 |
- type: cosine_precision@1
|
474 |
+
value: 0.08
|
475 |
name: Cosine Precision@1
|
476 |
- type: cosine_precision@3
|
477 |
+
value: 0.11555555555555555
|
478 |
name: Cosine Precision@3
|
479 |
- type: cosine_precision@5
|
480 |
+
value: 0.09866666666666667
|
481 |
name: Cosine Precision@5
|
482 |
- type: cosine_precision@10
|
483 |
+
value: 0.05599999999999999
|
484 |
name: Cosine Precision@10
|
485 |
- type: cosine_recall@1
|
486 |
+
value: 0.08
|
487 |
name: Cosine Recall@1
|
488 |
- type: cosine_recall@3
|
489 |
+
value: 0.3466666666666667
|
490 |
name: Cosine Recall@3
|
491 |
- type: cosine_recall@5
|
492 |
+
value: 0.49333333333333335
|
493 |
name: Cosine Recall@5
|
494 |
- type: cosine_recall@10
|
495 |
+
value: 0.56
|
496 |
name: Cosine Recall@10
|
497 |
- type: cosine_ndcg@10
|
498 |
+
value: 0.3120295466486537
|
499 |
name: Cosine Ndcg@10
|
500 |
- type: cosine_mrr@10
|
501 |
+
value: 0.23260846560846554
|
502 |
name: Cosine Mrr@10
|
503 |
- type: cosine_map@100
|
504 |
+
value: 0.24731947636993173
|
505 |
name: Cosine Map@100
|
506 |
---
|
507 |
|
508 |
# BGE base Financial Matryoshka
|
509 |
|
510 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
511 |
|
512 |
## Model Details
|
513 |
|
514 |
### Model Description
|
515 |
- **Model Type:** Sentence Transformer
|
516 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
517 |
- **Maximum Sequence Length:** 512 tokens
|
518 |
- **Output Dimensionality:** 768 dimensions
|
519 |
- **Similarity Function:** Cosine Similarity
|
|
|
531 |
|
532 |
```
|
533 |
SentenceTransformer(
|
534 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
535 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
536 |
+
(2): Normalize()
|
537 |
)
|
538 |
```
|
539 |
|
|
|
552 |
from sentence_transformers import SentenceTransformer
|
553 |
|
554 |
# Download from the 🤗 Hub
|
555 |
+
model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5")
|
556 |
# Run inference
|
557 |
sentences = [
|
558 |
+
'What managed services does TechChefz provide ?',
|
559 |
' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
|
560 |
+
'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages',
|
561 |
]
|
562 |
embeddings = model.encode(sentences)
|
563 |
print(embeddings.shape)
|
|
|
602 |
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
603 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
604 |
|
605 |
+
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
606 |
+
|:--------------------|:-----------|:-----------|:-----------|:-----------|:----------|
|
607 |
+
| cosine_accuracy@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
|
608 |
+
| cosine_accuracy@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 |
|
609 |
+
| cosine_accuracy@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 |
|
610 |
+
| cosine_accuracy@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 |
|
611 |
+
| cosine_precision@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
|
612 |
+
| cosine_precision@3 | 0.1822 | 0.1778 | 0.1644 | 0.16 | 0.1156 |
|
613 |
+
| cosine_precision@5 | 0.12 | 0.1253 | 0.112 | 0.112 | 0.0987 |
|
614 |
+
| cosine_precision@10 | 0.0693 | 0.0693 | 0.068 | 0.0693 | 0.056 |
|
615 |
+
| cosine_recall@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
|
616 |
+
| cosine_recall@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 |
|
617 |
+
| cosine_recall@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 |
|
618 |
+
| cosine_recall@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 |
|
619 |
+
| **cosine_ndcg@10** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** |
|
620 |
+
| cosine_mrr@10 | 0.354 | 0.3495 | 0.3621 | 0.3665 | 0.2326 |
|
621 |
+
| cosine_map@100 | 0.3664 | 0.3599 | 0.3732 | 0.3755 | 0.2473 |
|
622 |
|
623 |
<!--
|
624 |
## Bias, Risks and Limitations
|
|
|
642 |
* Size: 150 training samples
|
643 |
* Columns: <code>anchor</code> and <code>positive</code>
|
644 |
* Approximate statistics based on the first 150 samples:
|
645 |
+
| | anchor | positive |
|
646 |
+
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
647 |
+
| type | string | string |
|
648 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.4 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
|
649 |
* Samples:
|
650 |
| anchor | positive |
|
651 |
|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
|
688 |
- `load_best_model_at_end`: True
|
689 |
- `optim`: adamw_torch_fused
|
690 |
- `push_to_hub`: True
|
691 |
+
- `hub_model_id`: Shashwat13333/bge-base-en-v1.5
|
692 |
+
- `push_to_hub_model_id`: bge-base-en-v1.5
|
693 |
- `batch_sampler`: no_duplicates
|
694 |
|
695 |
#### All Hyperparameters
|
|
|
775 |
- `use_legacy_prediction_loop`: False
|
776 |
- `push_to_hub`: True
|
777 |
- `resume_from_checkpoint`: None
|
778 |
+
- `hub_model_id`: Shashwat13333/bge-base-en-v1.5
|
779 |
- `hub_strategy`: every_save
|
780 |
- `hub_private_repo`: None
|
781 |
- `hub_always_push`: False
|
|
|
785 |
- `include_for_metrics`: []
|
786 |
- `eval_do_concat_batches`: True
|
787 |
- `fp16_backend`: auto
|
788 |
+
- `push_to_hub_model_id`: bge-base-en-v1.5
|
789 |
- `push_to_hub_organization`: None
|
790 |
- `mp_parameters`:
|
791 |
- `auto_find_batch_size`: False
|
|
|
814 |
</details>
|
815 |
|
816 |
### Training Logs
|
817 |
+
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
818 |
+
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
819 |
+
| 0.2105 | 1 | 4.4608 | - | - | - | - | - |
|
820 |
+
| 0.8421 | 4 | - | 0.3891 | 0.3727 | 0.4175 | 0.3876 | 0.2956 |
|
821 |
+
| 1.2105 | 5 | 4.2215 | - | - | - | - | - |
|
822 |
+
| 1.8421 | 8 | - | 0.4088 | 0.4351 | 0.4034 | 0.4052 | 0.3167 |
|
823 |
+
| 2.4211 | 10 | 3.397 | - | - | - | - | - |
|
824 |
+
| 2.8421 | 12 | - | 0.4440 | 0.4252 | 0.4133 | 0.4284 | 0.3024 |
|
825 |
+
| 3.6316 | 15 | 2.87 | - | - | - | - | - |
|
826 |
+
| **3.8421** | **16** | **-** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** |
|
827 |
|
828 |
* The bold row denotes the saved checkpoint.
|
829 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265462608
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d91a104071bb5ba669e148ddb4754936ef42ce0974dd548e4bb32e07b965495
|
3 |
size 265462608
|
modules.json
CHANGED
@@ -10,5 +10,11 @@
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
]
|
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
}
|
20 |
]
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
"max_seq_length": 512,
|
3 |
-
"do_lower_case":
|
4 |
}
|
|
|
1 |
{
|
2 |
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5752
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acda547ef8c30f593bf86268f13c3858cbb6cc76828a1044452f749033019e66
|
3 |
size 5752
|