Shashwat13333 commited on
Commit
a57987d
·
verified ·
1 Parent(s): 87950ea

Training in progress, epoch 0

Browse files
1_Pooling/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
 
1
  {
2
  "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
README.md CHANGED
@@ -10,7 +10,7 @@ tags:
10
  - dataset_size:150
11
  - loss:MatryoshkaLoss
12
  - loss:MultipleNegativesRankingLoss
13
- base_model: sentence-transformers/msmarco-distilbert-base-v4
14
  widget:
15
  - source_sentence: What services does Techchefz Digital offer for AI adoption?
16
  sentences:
@@ -34,7 +34,7 @@ widget:
34
  Getting started is easy. Contact us through our website. We''ll schedule a consultation
35
  to discuss your needs, evaluate your current infrastructure, and propose a customized
36
  DevOps solution designed to achieve your goals.'
37
- - source_sentence: Do you provide support 24/7?
38
  sentences:
39
  - 'How do we do Custom Development ?
40
 
@@ -105,7 +105,7 @@ widget:
105
  \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
106
  \ team to solve your hiring challenges with our easy to deploy staff augmentation\
107
  \ offerings.\""
108
- - source_sentence: What kind of data do you leverage for AI solutions?
109
  sentences:
110
  - 'Why do we need Microservices ?
111
 
@@ -123,38 +123,6 @@ widget:
123
  Technology Diversity
124
 
125
  Continuous Delivery'
126
- - Our AI/ML services pave the way for transformative change across industries, embodying
127
- a client-focused approach that integrates seamlessly with human-centric innovation.
128
- Our collaborative teams are dedicated to fostering growth, leveraging data, and
129
- harnessing the predictive power of artificial intelligence to forge the next wave
130
- of software excellence. We don't just deliver AI; we deliver the future.
131
- - 'What makes your DevOps solutions stand out from the competition?
132
-
133
- Our DevOps solutions stand out due to our personalized approach, extensive expertise,
134
- and commitment to innovation. We focus on delivering measurable results, such
135
- as reduced deployment times, improved system reliability, and enhanced security,
136
- ensuring you get the maximum benefit from our services.'
137
- - source_sentence: How did TechChefz evolve from its early days?
138
- sentences:
139
- - 'Our Solutions
140
-
141
- Strategy & Digital Transformation
142
-
143
- Innovate via digital transformation, modernize tech, craft product strategies,
144
- enhance customer experiences, optimize data analytics, transition to cloud for
145
- growth and efficiency
146
-
147
-
148
- Product Engineering & Custom Development
149
-
150
- Providing product development, enterprise web and mobile development, microservices
151
- integrations, quality engineering, and application support services to drive innovation
152
- and enhance operational efficiency.'
153
- - 'In what ways can machine learning optimize our operations?
154
-
155
- Machine learning algorithms can analyze operational data to identify inefficiencies,
156
- predict maintenance needs, optimize supply chains, and automate repetitive tasks,
157
- significantly improving operational efficiency and reducing costs.'
158
  - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
159
  decision to depart from the corporate ladder in December 2016. Fueled by a clear
160
  vision to revolutionize the digital landscape, Mayank set out to leverage the
@@ -177,7 +145,42 @@ widget:
177
  and exponential growth. His leadership has been instrumental in shaping TechChefz
178
  Digital into a leading force in the digital transformation arena, inspiring a
179
  culture of innovation and excellence that continues to propel the company forward.'
180
- - source_sentence: What do you guys do for digital strategy?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  sentences:
182
  - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
183
  \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
@@ -190,6 +193,12 @@ widget:
190
  \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
191
  \ your business-critical applications, data, and IT workloads, along with Application\
192
  \ maintenance and operations\n"
 
 
 
 
 
 
193
  - 'Introducing the world of General Insurance Firm
194
 
195
  In this project, we implemented Digital Solution and Implementation with Headless
@@ -213,15 +222,6 @@ widget:
213
  & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
214
  buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
215
  campaign pages'
216
- - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
217
- for Complex Problems and delieverd a comprehensive Website Development, Production
218
- Support & Managed Services, we optimized customer journeys, integrate analytics,
219
- CRM, ERP, and third-party applications, and implement cutting-edge technologies
220
- for enhanced performance and efficiency
221
-
222
- and achievied 200% Reduction in operational time & effort managing content & experience,
223
- 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
224
- & Retention'
225
  pipeline_tag: sentence-similarity
226
  library_name: sentence-transformers
227
  metrics:
@@ -251,49 +251,49 @@ model-index:
251
  type: dim_768
252
  metrics:
253
  - type: cosine_accuracy@1
254
- value: 0.02666666666666667
255
  name: Cosine Accuracy@1
256
  - type: cosine_accuracy@3
257
- value: 0.49333333333333335
258
  name: Cosine Accuracy@3
259
  - type: cosine_accuracy@5
260
- value: 0.5733333333333334
261
  name: Cosine Accuracy@5
262
  - type: cosine_accuracy@10
263
  value: 0.6933333333333334
264
  name: Cosine Accuracy@10
265
  - type: cosine_precision@1
266
- value: 0.02666666666666667
267
  name: Cosine Precision@1
268
  - type: cosine_precision@3
269
- value: 0.16444444444444442
270
  name: Cosine Precision@3
271
  - type: cosine_precision@5
272
- value: 0.11466666666666664
273
  name: Cosine Precision@5
274
  - type: cosine_precision@10
275
  value: 0.06933333333333333
276
  name: Cosine Precision@10
277
  - type: cosine_recall@1
278
- value: 0.02666666666666667
279
  name: Cosine Recall@1
280
  - type: cosine_recall@3
281
- value: 0.49333333333333335
282
  name: Cosine Recall@3
283
  - type: cosine_recall@5
284
- value: 0.5733333333333334
285
  name: Cosine Recall@5
286
  - type: cosine_recall@10
287
  value: 0.6933333333333334
288
  name: Cosine Recall@10
289
  - type: cosine_ndcg@10
290
- value: 0.35508522450527796
291
  name: Cosine Ndcg@10
292
  - type: cosine_mrr@10
293
- value: 0.24601587301587297
294
  name: Cosine Mrr@10
295
  - type: cosine_map@100
296
- value: 0.260452237646067
297
  name: Cosine Map@100
298
  - task:
299
  type: information-retrieval
@@ -303,49 +303,49 @@ model-index:
303
  type: dim_512
304
  metrics:
305
  - type: cosine_accuracy@1
306
- value: 0.06666666666666667
307
  name: Cosine Accuracy@1
308
  - type: cosine_accuracy@3
309
- value: 0.52
310
  name: Cosine Accuracy@3
311
  - type: cosine_accuracy@5
312
- value: 0.5733333333333334
313
  name: Cosine Accuracy@5
314
  - type: cosine_accuracy@10
315
- value: 0.7333333333333333
316
  name: Cosine Accuracy@10
317
  - type: cosine_precision@1
318
- value: 0.06666666666666667
319
  name: Cosine Precision@1
320
  - type: cosine_precision@3
321
- value: 0.17333333333333334
322
  name: Cosine Precision@3
323
  - type: cosine_precision@5
324
- value: 0.11466666666666664
325
  name: Cosine Precision@5
326
  - type: cosine_precision@10
327
- value: 0.0733333333333333
328
  name: Cosine Precision@10
329
  - type: cosine_recall@1
330
- value: 0.06666666666666667
331
  name: Cosine Recall@1
332
  - type: cosine_recall@3
333
- value: 0.52
334
  name: Cosine Recall@3
335
  - type: cosine_recall@5
336
- value: 0.5733333333333334
337
  name: Cosine Recall@5
338
  - type: cosine_recall@10
339
- value: 0.7333333333333333
340
  name: Cosine Recall@10
341
  - type: cosine_ndcg@10
342
- value: 0.38641175032218505
343
  name: Cosine Ndcg@10
344
  - type: cosine_mrr@10
345
- value: 0.27583068783068776
346
  name: Cosine Mrr@10
347
  - type: cosine_map@100
348
- value: 0.2865406223728409
349
  name: Cosine Map@100
350
  - task:
351
  type: information-retrieval
@@ -355,49 +355,49 @@ model-index:
355
  type: dim_256
356
  metrics:
357
  - type: cosine_accuracy@1
358
- value: 0.02666666666666667
359
  name: Cosine Accuracy@1
360
  - type: cosine_accuracy@3
361
- value: 0.4533333333333333
362
  name: Cosine Accuracy@3
363
  - type: cosine_accuracy@5
364
- value: 0.5333333333333333
365
  name: Cosine Accuracy@5
366
  - type: cosine_accuracy@10
367
- value: 0.7066666666666667
368
  name: Cosine Accuracy@10
369
  - type: cosine_precision@1
370
- value: 0.02666666666666667
371
  name: Cosine Precision@1
372
  - type: cosine_precision@3
373
- value: 0.15111111111111108
374
  name: Cosine Precision@3
375
  - type: cosine_precision@5
376
- value: 0.10666666666666667
377
  name: Cosine Precision@5
378
  - type: cosine_precision@10
379
- value: 0.07066666666666666
380
  name: Cosine Precision@10
381
  - type: cosine_recall@1
382
- value: 0.02666666666666667
383
  name: Cosine Recall@1
384
  - type: cosine_recall@3
385
- value: 0.4533333333333333
386
  name: Cosine Recall@3
387
  - type: cosine_recall@5
388
- value: 0.5333333333333333
389
  name: Cosine Recall@5
390
  - type: cosine_recall@10
391
- value: 0.7066666666666667
392
  name: Cosine Recall@10
393
  - type: cosine_ndcg@10
394
- value: 0.3453164244857898
395
  name: Cosine Ndcg@10
396
  - type: cosine_mrr@10
397
- value: 0.23110582010582006
398
  name: Cosine Mrr@10
399
  - type: cosine_map@100
400
- value: 0.24333641899597835
401
  name: Cosine Map@100
402
  - task:
403
  type: information-retrieval
@@ -407,49 +407,49 @@ model-index:
407
  type: dim_128
408
  metrics:
409
  - type: cosine_accuracy@1
410
- value: 0.02666666666666667
411
  name: Cosine Accuracy@1
412
  - type: cosine_accuracy@3
413
- value: 0.4666666666666667
414
  name: Cosine Accuracy@3
415
  - type: cosine_accuracy@5
416
- value: 0.5466666666666666
417
  name: Cosine Accuracy@5
418
  - type: cosine_accuracy@10
419
- value: 0.68
420
  name: Cosine Accuracy@10
421
  - type: cosine_precision@1
422
- value: 0.02666666666666667
423
  name: Cosine Precision@1
424
  - type: cosine_precision@3
425
- value: 0.15555555555555556
426
  name: Cosine Precision@3
427
  - type: cosine_precision@5
428
- value: 0.10933333333333332
429
  name: Cosine Precision@5
430
  - type: cosine_precision@10
431
- value: 0.06799999999999999
432
  name: Cosine Precision@10
433
  - type: cosine_recall@1
434
- value: 0.02666666666666667
435
  name: Cosine Recall@1
436
  - type: cosine_recall@3
437
- value: 0.4666666666666667
438
  name: Cosine Recall@3
439
  - type: cosine_recall@5
440
- value: 0.5466666666666666
441
  name: Cosine Recall@5
442
  - type: cosine_recall@10
443
- value: 0.68
444
  name: Cosine Recall@10
445
  - type: cosine_ndcg@10
446
- value: 0.34067981351267523
447
  name: Cosine Ndcg@10
448
  - type: cosine_mrr@10
449
- value: 0.23201587301587295
450
  name: Cosine Mrr@10
451
  - type: cosine_map@100
452
- value: 0.24399797704322276
453
  name: Cosine Map@100
454
  - task:
455
  type: information-retrieval
@@ -459,61 +459,61 @@ model-index:
459
  type: dim_64
460
  metrics:
461
  - type: cosine_accuracy@1
462
- value: 0.02666666666666667
463
  name: Cosine Accuracy@1
464
  - type: cosine_accuracy@3
465
- value: 0.38666666666666666
466
  name: Cosine Accuracy@3
467
  - type: cosine_accuracy@5
468
- value: 0.5066666666666667
469
  name: Cosine Accuracy@5
470
  - type: cosine_accuracy@10
471
- value: 0.64
472
  name: Cosine Accuracy@10
473
  - type: cosine_precision@1
474
- value: 0.02666666666666667
475
  name: Cosine Precision@1
476
  - type: cosine_precision@3
477
- value: 0.1288888888888889
478
  name: Cosine Precision@3
479
  - type: cosine_precision@5
480
- value: 0.10133333333333333
481
  name: Cosine Precision@5
482
  - type: cosine_precision@10
483
- value: 0.064
484
  name: Cosine Precision@10
485
  - type: cosine_recall@1
486
- value: 0.02666666666666667
487
  name: Cosine Recall@1
488
  - type: cosine_recall@3
489
- value: 0.38666666666666666
490
  name: Cosine Recall@3
491
  - type: cosine_recall@5
492
- value: 0.5066666666666667
493
  name: Cosine Recall@5
494
  - type: cosine_recall@10
495
- value: 0.64
496
  name: Cosine Recall@10
497
  - type: cosine_ndcg@10
498
- value: 0.3200422311786011
499
  name: Cosine Ndcg@10
500
  - type: cosine_mrr@10
501
- value: 0.21788359788359785
502
  name: Cosine Mrr@10
503
  - type: cosine_map@100
504
- value: 0.22860563412008764
505
  name: Cosine Map@100
506
  ---
507
 
508
  # BGE base Financial Matryoshka
509
 
510
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
511
 
512
  ## Model Details
513
 
514
  ### Model Description
515
  - **Model Type:** Sentence Transformer
516
- - **Base model:** [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4) <!-- at revision 19f0f4c73dc418bad0e0fc600611e808b7448a28 -->
517
  - **Maximum Sequence Length:** 512 tokens
518
  - **Output Dimensionality:** 768 dimensions
519
  - **Similarity Function:** Cosine Similarity
@@ -531,8 +531,9 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
531
 
532
  ```
533
  SentenceTransformer(
534
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
535
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
 
536
  )
537
  ```
538
 
@@ -551,12 +552,12 @@ Then you can load this model and run inference.
551
  from sentence_transformers import SentenceTransformer
552
 
553
  # Download from the 🤗 Hub
554
- model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4")
555
  # Run inference
556
  sentences = [
557
- 'What do you guys do for digital strategy?',
558
  ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
559
- 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention',
560
  ]
561
  embeddings = model.encode(sentences)
562
  print(embeddings.shape)
@@ -601,23 +602,23 @@ You can finetune this model on your own dataset.
601
  * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
602
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
603
 
604
- | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
605
- |:--------------------|:-----------|:-----------|:-----------|:-----------|:---------|
606
- | cosine_accuracy@1 | 0.0267 | 0.0667 | 0.0267 | 0.0267 | 0.0267 |
607
- | cosine_accuracy@3 | 0.4933 | 0.52 | 0.4533 | 0.4667 | 0.3867 |
608
- | cosine_accuracy@5 | 0.5733 | 0.5733 | 0.5333 | 0.5467 | 0.5067 |
609
- | cosine_accuracy@10 | 0.6933 | 0.7333 | 0.7067 | 0.68 | 0.64 |
610
- | cosine_precision@1 | 0.0267 | 0.0667 | 0.0267 | 0.0267 | 0.0267 |
611
- | cosine_precision@3 | 0.1644 | 0.1733 | 0.1511 | 0.1556 | 0.1289 |
612
- | cosine_precision@5 | 0.1147 | 0.1147 | 0.1067 | 0.1093 | 0.1013 |
613
- | cosine_precision@10 | 0.0693 | 0.0733 | 0.0707 | 0.068 | 0.064 |
614
- | cosine_recall@1 | 0.0267 | 0.0667 | 0.0267 | 0.0267 | 0.0267 |
615
- | cosine_recall@3 | 0.4933 | 0.52 | 0.4533 | 0.4667 | 0.3867 |
616
- | cosine_recall@5 | 0.5733 | 0.5733 | 0.5333 | 0.5467 | 0.5067 |
617
- | cosine_recall@10 | 0.6933 | 0.7333 | 0.7067 | 0.68 | 0.64 |
618
- | **cosine_ndcg@10** | **0.3551** | **0.3864** | **0.3453** | **0.3407** | **0.32** |
619
- | cosine_mrr@10 | 0.246 | 0.2758 | 0.2311 | 0.232 | 0.2179 |
620
- | cosine_map@100 | 0.2605 | 0.2865 | 0.2433 | 0.244 | 0.2286 |
621
 
622
  <!--
623
  ## Bias, Risks and Limitations
@@ -641,10 +642,10 @@ You can finetune this model on your own dataset.
641
  * Size: 150 training samples
642
  * Columns: <code>anchor</code> and <code>positive</code>
643
  * Approximate statistics based on the first 150 samples:
644
- | | anchor | positive |
645
- |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
646
- | type | string | string |
647
- | details | <ul><li>min: 8 tokens</li><li>mean: 12.17 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
648
  * Samples:
649
  | anchor | positive |
650
  |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
@@ -687,8 +688,8 @@ You can finetune this model on your own dataset.
687
  - `load_best_model_at_end`: True
688
  - `optim`: adamw_torch_fused
689
  - `push_to_hub`: True
690
- - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
691
- - `push_to_hub_model_id`: msmarco-distilbert-base-v4
692
  - `batch_sampler`: no_duplicates
693
 
694
  #### All Hyperparameters
@@ -774,7 +775,7 @@ You can finetune this model on your own dataset.
774
  - `use_legacy_prediction_loop`: False
775
  - `push_to_hub`: True
776
  - `resume_from_checkpoint`: None
777
- - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
778
  - `hub_strategy`: every_save
779
  - `hub_private_repo`: None
780
  - `hub_always_push`: False
@@ -784,7 +785,7 @@ You can finetune this model on your own dataset.
784
  - `include_for_metrics`: []
785
  - `eval_do_concat_batches`: True
786
  - `fp16_backend`: auto
787
- - `push_to_hub_model_id`: msmarco-distilbert-base-v4
788
  - `push_to_hub_organization`: None
789
  - `mp_parameters`:
790
  - `auto_find_batch_size`: False
@@ -813,16 +814,16 @@ You can finetune this model on your own dataset.
813
  </details>
814
 
815
  ### Training Logs
816
- | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
817
- |:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
818
- | 0.2105 | 1 | 4.338 | - | - | - | - | - |
819
- | **0.8421** | **4** | **-** | **0.3546** | **0.3692** | **0.3343** | **0.332** | **0.2959** |
820
- | 1.2105 | 5 | 5.7148 | - | - | - | - | - |
821
- | 1.8421 | 8 | - | 0.3573 | 0.3721 | 0.3395 | 0.3376 | 0.3115 |
822
- | 2.4211 | 10 | 4.5503 | - | - | - | - | - |
823
- | 2.8421 | 12 | - | 0.3658 | 0.3864 | 0.3447 | 0.3335 | 0.3160 |
824
- | 3.6316 | 15 | 4.006 | - | - | - | - | - |
825
- | 3.8421 | 16 | - | 0.3551 | 0.3864 | 0.3453 | 0.3407 | 0.3200 |
826
 
827
  * The bold row denotes the saved checkpoint.
828
 
 
10
  - dataset_size:150
11
  - loss:MatryoshkaLoss
12
  - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-base-en-v1.5
14
  widget:
15
  - source_sentence: What services does Techchefz Digital offer for AI adoption?
16
  sentences:
 
34
  Getting started is easy. Contact us through our website. We''ll schedule a consultation
35
  to discuss your needs, evaluate your current infrastructure, and propose a customized
36
  DevOps solution designed to achieve your goals.'
37
+ - source_sentence: Hav you made any services for schools and students?
38
  sentences:
39
  - 'How do we do Custom Development ?
40
 
 
105
  \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
106
  \ team to solve your hiring challenges with our easy to deploy staff augmentation\
107
  \ offerings.\""
108
+ - source_sentence: How did TechChefz evolve from its early days?
109
  sentences:
110
  - 'Why do we need Microservices ?
111
 
 
123
  Technology Diversity
124
 
125
  Continuous Delivery'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
127
  decision to depart from the corporate ladder in December 2016. Fueled by a clear
128
  vision to revolutionize the digital landscape, Mayank set out to leverage the
 
145
  and exponential growth. His leadership has been instrumental in shaping TechChefz
146
  Digital into a leading force in the digital transformation arena, inspiring a
147
  culture of innovation and excellence that continues to propel the company forward.'
148
+ - 'In what ways can machine learning optimize our operations?
149
+
150
+ Machine learning algorithms can analyze operational data to identify inefficiencies,
151
+ predict maintenance needs, optimize supply chains, and automate repetitive tasks,
152
+ significantly improving operational efficiency and reducing costs.'
153
+ - source_sentence: What kind of data do you leverage for AI solutions?
154
+ sentences:
155
+ - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
156
+ for Complex Problems and delieverd a comprehensive Website Development, Production
157
+ Support & Managed Services, we optimized customer journeys, integrate analytics,
158
+ CRM, ERP, and third-party applications, and implement cutting-edge technologies
159
+ for enhanced performance and efficiency
160
+
161
+ and achievied 200% Reduction in operational time & effort managing content & experience,
162
+ 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
163
+ & Retention'
164
+ - 'Our Solutions
165
+
166
+ Strategy & Digital Transformation
167
+
168
+ Innovate via digital transformation, modernize tech, craft product strategies,
169
+ enhance customer experiences, optimize data analytics, transition to cloud for
170
+ growth and efficiency
171
+
172
+
173
+ Product Engineering & Custom Development
174
+
175
+ Providing product development, enterprise web and mobile development, microservices
176
+ integrations, quality engineering, and application support services to drive innovation
177
+ and enhance operational efficiency.'
178
+ - Our AI/ML services pave the way for transformative change across industries, embodying
179
+ a client-focused approach that integrates seamlessly with human-centric innovation.
180
+ Our collaborative teams are dedicated to fostering growth, leveraging data, and
181
+ harnessing the predictive power of artificial intelligence to forge the next wave
182
+ of software excellence. We don't just deliver AI; we deliver the future.
183
+ - source_sentence: What managed services does TechChefz provide ?
184
  sentences:
185
  - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
186
  \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
 
193
  \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
194
  \ your business-critical applications, data, and IT workloads, along with Application\
195
  \ maintenance and operations\n"
196
+ - 'What makes your DevOps solutions stand out from the competition?
197
+
198
+ Our DevOps solutions stand out due to our personalized approach, extensive expertise,
199
+ and commitment to innovation. We focus on delivering measurable results, such
200
+ as reduced deployment times, improved system reliability, and enhanced security,
201
+ ensuring you get the maximum benefit from our services.'
202
  - 'Introducing the world of General Insurance Firm
203
 
204
  In this project, we implemented Digital Solution and Implementation with Headless
 
222
  & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
223
  buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
224
  campaign pages'
 
 
 
 
 
 
 
 
 
225
  pipeline_tag: sentence-similarity
226
  library_name: sentence-transformers
227
  metrics:
 
251
  type: dim_768
252
  metrics:
253
  - type: cosine_accuracy@1
254
+ value: 0.17333333333333334
255
  name: Cosine Accuracy@1
256
  - type: cosine_accuracy@3
257
+ value: 0.5466666666666666
258
  name: Cosine Accuracy@3
259
  - type: cosine_accuracy@5
260
+ value: 0.6
261
  name: Cosine Accuracy@5
262
  - type: cosine_accuracy@10
263
  value: 0.6933333333333334
264
  name: Cosine Accuracy@10
265
  - type: cosine_precision@1
266
+ value: 0.17333333333333334
267
  name: Cosine Precision@1
268
  - type: cosine_precision@3
269
+ value: 0.1822222222222222
270
  name: Cosine Precision@3
271
  - type: cosine_precision@5
272
+ value: 0.12
273
  name: Cosine Precision@5
274
  - type: cosine_precision@10
275
  value: 0.06933333333333333
276
  name: Cosine Precision@10
277
  - type: cosine_recall@1
278
+ value: 0.17333333333333334
279
  name: Cosine Recall@1
280
  - type: cosine_recall@3
281
+ value: 0.5466666666666666
282
  name: Cosine Recall@3
283
  - type: cosine_recall@5
284
+ value: 0.6
285
  name: Cosine Recall@5
286
  - type: cosine_recall@10
287
  value: 0.6933333333333334
288
  name: Cosine Recall@10
289
  - type: cosine_ndcg@10
290
+ value: 0.43705488094312567
291
  name: Cosine Ndcg@10
292
  - type: cosine_mrr@10
293
+ value: 0.3539576719576719
294
  name: Cosine Mrr@10
295
  - type: cosine_map@100
296
+ value: 0.3663753684578632
297
  name: Cosine Map@100
298
  - task:
299
  type: information-retrieval
 
303
  type: dim_512
304
  metrics:
305
  - type: cosine_accuracy@1
306
+ value: 0.17333333333333334
307
  name: Cosine Accuracy@1
308
  - type: cosine_accuracy@3
309
+ value: 0.5333333333333333
310
  name: Cosine Accuracy@3
311
  - type: cosine_accuracy@5
312
+ value: 0.6266666666666667
313
  name: Cosine Accuracy@5
314
  - type: cosine_accuracy@10
315
+ value: 0.6933333333333334
316
  name: Cosine Accuracy@10
317
  - type: cosine_precision@1
318
+ value: 0.17333333333333334
319
  name: Cosine Precision@1
320
  - type: cosine_precision@3
321
+ value: 0.17777777777777776
322
  name: Cosine Precision@3
323
  - type: cosine_precision@5
324
+ value: 0.12533333333333332
325
  name: Cosine Precision@5
326
  - type: cosine_precision@10
327
+ value: 0.06933333333333333
328
  name: Cosine Precision@10
329
  - type: cosine_recall@1
330
+ value: 0.17333333333333334
331
  name: Cosine Recall@1
332
  - type: cosine_recall@3
333
+ value: 0.5333333333333333
334
  name: Cosine Recall@3
335
  - type: cosine_recall@5
336
+ value: 0.6266666666666667
337
  name: Cosine Recall@5
338
  - type: cosine_recall@10
339
+ value: 0.6933333333333334
340
  name: Cosine Recall@10
341
  - type: cosine_ndcg@10
342
+ value: 0.43324477959330543
343
  name: Cosine Ndcg@10
344
  - type: cosine_mrr@10
345
+ value: 0.3495185185185184
346
  name: Cosine Mrr@10
347
  - type: cosine_map@100
348
+ value: 0.359896266319179
349
  name: Cosine Map@100
350
  - task:
351
  type: information-retrieval
 
355
  type: dim_256
356
  metrics:
357
  - type: cosine_accuracy@1
358
+ value: 0.22666666666666666
359
  name: Cosine Accuracy@1
360
  - type: cosine_accuracy@3
361
+ value: 0.49333333333333335
362
  name: Cosine Accuracy@3
363
  - type: cosine_accuracy@5
364
+ value: 0.56
365
  name: Cosine Accuracy@5
366
  - type: cosine_accuracy@10
367
+ value: 0.68
368
  name: Cosine Accuracy@10
369
  - type: cosine_precision@1
370
+ value: 0.22666666666666666
371
  name: Cosine Precision@1
372
  - type: cosine_precision@3
373
+ value: 0.16444444444444445
374
  name: Cosine Precision@3
375
  - type: cosine_precision@5
376
+ value: 0.11199999999999997
377
  name: Cosine Precision@5
378
  - type: cosine_precision@10
379
+ value: 0.06799999999999998
380
  name: Cosine Precision@10
381
  - type: cosine_recall@1
382
+ value: 0.22666666666666666
383
  name: Cosine Recall@1
384
  - type: cosine_recall@3
385
+ value: 0.49333333333333335
386
  name: Cosine Recall@3
387
  - type: cosine_recall@5
388
+ value: 0.56
389
  name: Cosine Recall@5
390
  - type: cosine_recall@10
391
+ value: 0.68
392
  name: Cosine Recall@10
393
  - type: cosine_ndcg@10
394
+ value: 0.4383628839300849
395
  name: Cosine Ndcg@10
396
  - type: cosine_mrr@10
397
+ value: 0.36210582010582004
398
  name: Cosine Mrr@10
399
  - type: cosine_map@100
400
+ value: 0.3731640827722892
401
  name: Cosine Map@100
402
  - task:
403
  type: information-retrieval
 
407
  type: dim_128
408
  metrics:
409
  - type: cosine_accuracy@1
410
+ value: 0.24
411
  name: Cosine Accuracy@1
412
  - type: cosine_accuracy@3
413
+ value: 0.48
414
  name: Cosine Accuracy@3
415
  - type: cosine_accuracy@5
416
+ value: 0.56
417
  name: Cosine Accuracy@5
418
  - type: cosine_accuracy@10
419
+ value: 0.6933333333333334
420
  name: Cosine Accuracy@10
421
  - type: cosine_precision@1
422
+ value: 0.24
423
  name: Cosine Precision@1
424
  - type: cosine_precision@3
425
+ value: 0.16
426
  name: Cosine Precision@3
427
  - type: cosine_precision@5
428
+ value: 0.11199999999999997
429
  name: Cosine Precision@5
430
  - type: cosine_precision@10
431
+ value: 0.06933333333333332
432
  name: Cosine Precision@10
433
  - type: cosine_recall@1
434
+ value: 0.24
435
  name: Cosine Recall@1
436
  - type: cosine_recall@3
437
+ value: 0.48
438
  name: Cosine Recall@3
439
  - type: cosine_recall@5
440
+ value: 0.56
441
  name: Cosine Recall@5
442
  - type: cosine_recall@10
443
+ value: 0.6933333333333334
444
  name: Cosine Recall@10
445
  - type: cosine_ndcg@10
446
+ value: 0.4443870388298522
447
  name: Cosine Ndcg@10
448
  - type: cosine_mrr@10
449
+ value: 0.36651322751322746
450
  name: Cosine Mrr@10
451
  - type: cosine_map@100
452
+ value: 0.37546675549059694
453
  name: Cosine Map@100
454
  - task:
455
  type: information-retrieval
 
459
  type: dim_64
460
  metrics:
461
  - type: cosine_accuracy@1
462
+ value: 0.08
463
  name: Cosine Accuracy@1
464
  - type: cosine_accuracy@3
465
+ value: 0.3466666666666667
466
  name: Cosine Accuracy@3
467
  - type: cosine_accuracy@5
468
+ value: 0.49333333333333335
469
  name: Cosine Accuracy@5
470
  - type: cosine_accuracy@10
471
+ value: 0.56
472
  name: Cosine Accuracy@10
473
  - type: cosine_precision@1
474
+ value: 0.08
475
  name: Cosine Precision@1
476
  - type: cosine_precision@3
477
+ value: 0.11555555555555555
478
  name: Cosine Precision@3
479
  - type: cosine_precision@5
480
+ value: 0.09866666666666667
481
  name: Cosine Precision@5
482
  - type: cosine_precision@10
483
+ value: 0.05599999999999999
484
  name: Cosine Precision@10
485
  - type: cosine_recall@1
486
+ value: 0.08
487
  name: Cosine Recall@1
488
  - type: cosine_recall@3
489
+ value: 0.3466666666666667
490
  name: Cosine Recall@3
491
  - type: cosine_recall@5
492
+ value: 0.49333333333333335
493
  name: Cosine Recall@5
494
  - type: cosine_recall@10
495
+ value: 0.56
496
  name: Cosine Recall@10
497
  - type: cosine_ndcg@10
498
+ value: 0.3120295466486537
499
  name: Cosine Ndcg@10
500
  - type: cosine_mrr@10
501
+ value: 0.23260846560846554
502
  name: Cosine Mrr@10
503
  - type: cosine_map@100
504
+ value: 0.24731947636993173
505
  name: Cosine Map@100
506
  ---
507
 
508
  # BGE base Financial Matryoshka
509
 
510
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
511
 
512
  ## Model Details
513
 
514
  ### Model Description
515
  - **Model Type:** Sentence Transformer
516
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
517
  - **Maximum Sequence Length:** 512 tokens
518
  - **Output Dimensionality:** 768 dimensions
519
  - **Similarity Function:** Cosine Similarity
 
531
 
532
  ```
533
  SentenceTransformer(
534
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
535
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
536
+ (2): Normalize()
537
  )
538
  ```
539
 
 
552
  from sentence_transformers import SentenceTransformer
553
 
554
  # Download from the 🤗 Hub
555
+ model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5")
556
  # Run inference
557
  sentences = [
558
+ 'What managed services does TechChefz provide ?',
559
  ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
560
+ 'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages',
561
  ]
562
  embeddings = model.encode(sentences)
563
  print(embeddings.shape)
 
602
  * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
603
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
604
 
605
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
606
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:----------|
607
+ | cosine_accuracy@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
608
+ | cosine_accuracy@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 |
609
+ | cosine_accuracy@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 |
610
+ | cosine_accuracy@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 |
611
+ | cosine_precision@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
612
+ | cosine_precision@3 | 0.1822 | 0.1778 | 0.1644 | 0.16 | 0.1156 |
613
+ | cosine_precision@5 | 0.12 | 0.1253 | 0.112 | 0.112 | 0.0987 |
614
+ | cosine_precision@10 | 0.0693 | 0.0693 | 0.068 | 0.0693 | 0.056 |
615
+ | cosine_recall@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 |
616
+ | cosine_recall@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 |
617
+ | cosine_recall@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 |
618
+ | cosine_recall@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 |
619
+ | **cosine_ndcg@10** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** |
620
+ | cosine_mrr@10 | 0.354 | 0.3495 | 0.3621 | 0.3665 | 0.2326 |
621
+ | cosine_map@100 | 0.3664 | 0.3599 | 0.3732 | 0.3755 | 0.2473 |
622
 
623
  <!--
624
  ## Bias, Risks and Limitations
 
642
  * Size: 150 training samples
643
  * Columns: <code>anchor</code> and <code>positive</code>
644
  * Approximate statistics based on the first 150 samples:
645
+ | | anchor | positive |
646
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
647
+ | type | string | string |
648
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.4 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
649
  * Samples:
650
  | anchor | positive |
651
  |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
 
688
  - `load_best_model_at_end`: True
689
  - `optim`: adamw_torch_fused
690
  - `push_to_hub`: True
691
+ - `hub_model_id`: Shashwat13333/bge-base-en-v1.5
692
+ - `push_to_hub_model_id`: bge-base-en-v1.5
693
  - `batch_sampler`: no_duplicates
694
 
695
  #### All Hyperparameters
 
775
  - `use_legacy_prediction_loop`: False
776
  - `push_to_hub`: True
777
  - `resume_from_checkpoint`: None
778
+ - `hub_model_id`: Shashwat13333/bge-base-en-v1.5
779
  - `hub_strategy`: every_save
780
  - `hub_private_repo`: None
781
  - `hub_always_push`: False
 
785
  - `include_for_metrics`: []
786
  - `eval_do_concat_batches`: True
787
  - `fp16_backend`: auto
788
+ - `push_to_hub_model_id`: bge-base-en-v1.5
789
  - `push_to_hub_organization`: None
790
  - `mp_parameters`:
791
  - `auto_find_batch_size`: False
 
814
  </details>
815
 
816
  ### Training Logs
817
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
818
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
819
+ | 0.2105 | 1 | 4.4608 | - | - | - | - | - |
820
+ | 0.8421 | 4 | - | 0.3891 | 0.3727 | 0.4175 | 0.3876 | 0.2956 |
821
+ | 1.2105 | 5 | 4.2215 | - | - | - | - | - |
822
+ | 1.8421 | 8 | - | 0.4088 | 0.4351 | 0.4034 | 0.4052 | 0.3167 |
823
+ | 2.4211 | 10 | 3.397 | - | - | - | - | - |
824
+ | 2.8421 | 12 | - | 0.4440 | 0.4252 | 0.4133 | 0.4284 | 0.3024 |
825
+ | 3.6316 | 15 | 2.87 | - | - | - | - | - |
826
+ | **3.8421** | **16** | **-** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** |
827
 
828
  * The bold row denotes the saved checkpoint.
829
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b2e6e63e78a2e7b94184a152fa5974390e19405222a30d21c5addc2e9e429d06
3
  size 265462608
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d91a104071bb5ba669e148ddb4754936ef42ce0974dd548e4bb32e07b965495
3
  size 265462608
modules.json CHANGED
@@ -10,5 +10,11 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
  "max_seq_length": 512,
3
- "do_lower_case": false
4
  }
 
1
  {
2
  "max_seq_length": 512,
3
+ "do_lower_case": true
4
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:70b51c278270b5e837268f738cb2399738d891ab1fdb9174ac592e71aec3f1ae
3
  size 5752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acda547ef8c30f593bf86268f13c3858cbb6cc76828a1044452f749033019e66
3
  size 5752