--- language: - en license: apache-2.0 tags: - gpt2 - dpo - trl datasets: - HuggingFaceH4/ultrachat_200k - Intel/orca_dpo_pairs pipeline_tag: text-generation model-index: - name: chat_gpt2_dpo results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 23.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/chat_gpt2_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 31.22 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/chat_gpt2_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 24.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/chat_gpt2_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.26 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/chat_gpt2_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 49.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/chat_gpt2_dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/chat_gpt2_dpo name: Open LLM Leaderboard --- This model is a finetuned version of ```Sharathhebbar24/chat_gpt2``` using ```Intel/orca_dpo_pairs``` on DPO ## Model description GPT-2 is a transformers model pre-trained on a very large corpus of English data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifting one token (word or piece of word) to the right. The model uses a masking mechanism to make sure the predictions for the token `i` only use the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was trained for, however, which is generating texts from a prompt. ### To use this model ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model_name = "Sharathhebbar24/chat_gpt2_dpo" >>> model = AutoModelForCausalLM.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> def generate_text(prompt): >>> inputs = tokenizer.encode(prompt, return_tensors='pt') >>> outputs = model.generate(inputs, max_length=64, pad_token_id=tokenizer.eos_token_id) >>> generated = tokenizer.decode(outputs[0], skip_special_tokens=True) >>> return generated[:generated.rfind(".")+1] >>> prompt = """ >>> user: what are you? >>> assistant: I am a Chatbot intended to give a python program >>> user: hmm, can you write a python program to print Hii Heloo >>> assistant: Sure Here is a python code.\n print("Hii Heloo") >>> user: Can you write a Linear search program in python >>> """ >>> res = generate_text(prompt) >>> res ``` # Benchmark / Evaluation | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8k | | ------- | -------- | -------- | ------- | -------- | -------- | ------- | -------- | | Sharathhebbar24/chat_gpt2_dpo | 28.56 | 23.98 | 31.22 | 24.95 | 41.26 | 49.96 | 0 | ```python { "all": { "acc": 0.24915779048270345, "acc_stderr": 0.030509906389610868, "acc_norm": 0.25041231816215265, "acc_norm_stderr": 0.03132600249114931, "mc1": 0.2521419828641371, "mc1_stderr": 0.015201522246299965, "mc2": 0.41257163824244014, "mc2_stderr": 0.015127188811834062 }, "harness|arc:challenge|25": { "acc": 0.18686006825938567, "acc_stderr": 0.011391015649694391, "acc_norm": 0.23976109215017063, "acc_norm_stderr": 0.012476304127453954 }, "harness|hellaswag|10": { "acc": 0.28978291177056364, "acc_stderr": 0.004527343651130803, "acc_norm": 0.3121888070105557, "acc_norm_stderr": 0.0046243936909668975 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.22, "acc_stderr": 0.04163331998932268, "acc_norm": 0.22, "acc_norm_stderr": 0.04163331998932268 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.3037037037037037, "acc_stderr": 0.039725528847851375, "acc_norm": 0.3037037037037037, "acc_norm_stderr": 0.039725528847851375 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.17763157894736842, "acc_stderr": 0.031103182383123398, "acc_norm": 0.17763157894736842, "acc_norm_stderr": 0.031103182383123398 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.26, "acc_stderr": 0.0440844002276808, "acc_norm": 0.26, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.23018867924528302, "acc_stderr": 0.025907897122408173, "acc_norm": 0.23018867924528302, "acc_norm_stderr": 0.025907897122408173 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.19, "acc_stderr": 0.039427724440366234, "acc_norm": 0.19, "acc_norm_stderr": 0.039427724440366234 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.24, "acc_stderr": 0.04292346959909283, "acc_norm": 0.24, "acc_norm_stderr": 0.04292346959909283 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.29, "acc_stderr": 0.04560480215720684, "acc_norm": 0.29, "acc_norm_stderr": 0.04560480215720684 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.2543352601156069, "acc_stderr": 0.0332055644308557, "acc_norm": 0.2543352601156069, "acc_norm_stderr": 0.0332055644308557 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.21568627450980393, "acc_stderr": 0.04092563958237654, "acc_norm": 0.21568627450980393, "acc_norm_stderr": 0.04092563958237654 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.34, "acc_stderr": 0.04760952285695236, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695236 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.26382978723404255, "acc_stderr": 0.028809989854102973, "acc_norm": 0.26382978723404255, "acc_norm_stderr": 0.028809989854102973 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.24561403508771928, "acc_stderr": 0.04049339297748142, "acc_norm": 0.24561403508771928, "acc_norm_stderr": 0.04049339297748142 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.2413793103448276, "acc_stderr": 0.03565998174135302, "acc_norm": 0.2413793103448276, "acc_norm_stderr": 0.03565998174135302 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.24074074074074073, "acc_stderr": 0.02201908001221789, "acc_norm": 0.24074074074074073, "acc_norm_stderr": 0.02201908001221789 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.1349206349206349, "acc_stderr": 0.030557101589417515, "acc_norm": 0.1349206349206349, "acc_norm_stderr": 0.030557101589417515 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.16, "acc_stderr": 0.03684529491774708, "acc_norm": 0.16, "acc_norm_stderr": 0.03684529491774708 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.1774193548387097, "acc_stderr": 0.02173254068932927, "acc_norm": 0.1774193548387097, "acc_norm_stderr": 0.02173254068932927 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.24630541871921183, "acc_stderr": 0.030315099285617736, "acc_norm": 0.24630541871921183, "acc_norm_stderr": 0.030315099285617736 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.28, "acc_stderr": 0.04512608598542126, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542126 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.21818181818181817, "acc_stderr": 0.03225078108306289, "acc_norm": 0.21818181818181817, "acc_norm_stderr": 0.03225078108306289 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.3282828282828283, "acc_stderr": 0.03345678422756776, "acc_norm": 0.3282828282828283, "acc_norm_stderr": 0.03345678422756776 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.37305699481865284, "acc_stderr": 0.03490205592048573, "acc_norm": 0.37305699481865284, "acc_norm_stderr": 0.03490205592048573 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.26666666666666666, "acc_stderr": 0.02242127361292371, "acc_norm": 0.26666666666666666, "acc_norm_stderr": 0.02242127361292371 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.21481481481481482, "acc_stderr": 0.025040443877000683, "acc_norm": 0.21481481481481482, "acc_norm_stderr": 0.025040443877000683 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.22268907563025211, "acc_stderr": 0.027025433498882364, "acc_norm": 0.22268907563025211, "acc_norm_stderr": 0.027025433498882364 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.23178807947019867, "acc_stderr": 0.034454062719870546, "acc_norm": 0.23178807947019867, "acc_norm_stderr": 0.034454062719870546 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3302752293577982, "acc_stderr": 0.02016446633634298, "acc_norm": 0.3302752293577982, "acc_norm_stderr": 0.02016446633634298 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.19444444444444445, "acc_stderr": 0.026991454502036733, "acc_norm": 0.19444444444444445, "acc_norm_stderr": 0.026991454502036733 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25, "acc_stderr": 0.03039153369274154, "acc_norm": 0.25, "acc_norm_stderr": 0.03039153369274154 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.26582278481012656, "acc_stderr": 0.028756799629658342, "acc_norm": 0.26582278481012656, "acc_norm_stderr": 0.028756799629658342 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.17937219730941703, "acc_stderr": 0.0257498195691928, "acc_norm": 0.17937219730941703, "acc_norm_stderr": 0.0257498195691928 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.2366412213740458, "acc_stderr": 0.037276735755969174, "acc_norm": 0.2366412213740458, "acc_norm_stderr": 0.037276735755969174 }, "harness|hendrycksTest-international_law|5": { "acc": 0.35537190082644626, "acc_stderr": 0.04369236326573981, "acc_norm": 0.35537190082644626, "acc_norm_stderr": 0.04369236326573981 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.25925925925925924, "acc_stderr": 0.042365112580946336, "acc_norm": 0.25925925925925924, "acc_norm_stderr": 0.042365112580946336 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.2822085889570552, "acc_stderr": 0.03536117886664742, "acc_norm": 0.2822085889570552, "acc_norm_stderr": 0.03536117886664742 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.32142857142857145, "acc_stderr": 0.04432804055291519, "acc_norm": 0.32142857142857145, "acc_norm_stderr": 0.04432804055291519 }, "harness|hendrycksTest-management|5": { "acc": 0.1941747572815534, "acc_stderr": 0.03916667762822585, "acc_norm": 0.1941747572815534, "acc_norm_stderr": 0.03916667762822585 }, "harness|hendrycksTest-marketing|5": { "acc": 0.2905982905982906, "acc_stderr": 0.02974504857267404, "acc_norm": 0.2905982905982906, "acc_norm_stderr": 0.02974504857267404 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.23627075351213284, "acc_stderr": 0.015190473717037497, "acc_norm": 0.23627075351213284, "acc_norm_stderr": 0.015190473717037497 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.24566473988439305, "acc_stderr": 0.02317629820399201, "acc_norm": 0.24566473988439305, "acc_norm_stderr": 0.02317629820399201 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.24581005586592178, "acc_stderr": 0.014400296429225587, "acc_norm": 0.24581005586592178, "acc_norm_stderr": 0.014400296429225587 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.25163398692810457, "acc_stderr": 0.024848018263875195, "acc_norm": 0.25163398692810457, "acc_norm_stderr": 0.024848018263875195 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.18006430868167203, "acc_stderr": 0.021823422857744953, "acc_norm": 0.18006430868167203, "acc_norm_stderr": 0.021823422857744953 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.25617283950617287, "acc_stderr": 0.024288533637726095, "acc_norm": 0.25617283950617287, "acc_norm_stderr": 0.024288533637726095 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.2801418439716312, "acc_stderr": 0.02678917235114023, "acc_norm": 0.2801418439716312, "acc_norm_stderr": 0.02678917235114023 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.24837027379400262, "acc_stderr": 0.011035212598034503, "acc_norm": 0.24837027379400262, "acc_norm_stderr": 0.011035212598034503 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.3125, "acc_stderr": 0.02815637344037142, "acc_norm": 0.3125, "acc_norm_stderr": 0.02815637344037142 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.25, "acc_stderr": 0.01751781884501444, "acc_norm": 0.25, "acc_norm_stderr": 0.01751781884501444 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.18181818181818182, "acc_stderr": 0.03694284335337801, "acc_norm": 0.18181818181818182, "acc_norm_stderr": 0.03694284335337801 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.31020408163265306, "acc_stderr": 0.029613459872484378, "acc_norm": 0.31020408163265306, "acc_norm_stderr": 0.029613459872484378 }, "harness|hendrycksTest-sociology|5": { "acc": 0.24875621890547264, "acc_stderr": 0.030567675938916707, "acc_norm": 0.24875621890547264, "acc_norm_stderr": 0.030567675938916707 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-virology|5": { "acc": 0.19879518072289157, "acc_stderr": 0.03106939026078942, "acc_norm": 0.19879518072289157, "acc_norm_stderr": 0.03106939026078942 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.29239766081871343, "acc_stderr": 0.034886477134579215, "acc_norm": 0.29239766081871343, "acc_norm_stderr": 0.034886477134579215 }, "harness|truthfulqa:mc|0": { "mc1": 0.2521419828641371, "mc1_stderr": 0.015201522246299965, "mc2": 0.41257163824244014, "mc2_stderr": 0.015127188811834062 }, "harness|winogrande|5": { "acc": 0.4996053670086819, "acc_stderr": 0.014052481306049512 }, "harness|gsm8k|5": { "acc": 0.0, "acc_stderr": 0.0 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Sharathhebbar24__chat_gpt2_dpo) | Metric |Value| |---------------------------------|----:| |Avg. |28.56| |AI2 Reasoning Challenge (25-Shot)|23.98| |HellaSwag (10-Shot) |31.22| |MMLU (5-Shot) |24.95| |TruthfulQA (0-shot) |41.26| |Winogrande (5-shot) |49.96| |GSM8k (5-shot) | 0.00|