Upload 2 files
Browse files- controlnet_flux.py +509 -0
- pipeline_flux_controlnet.py +1181 -0
controlnet_flux.py
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin
|
23 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
24 |
+
from diffusers.models.modeling_utils import ModelMixin
|
25 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
26 |
+
from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
|
27 |
+
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
28 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
29 |
+
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class FluxControlNetOutput(BaseOutput):
|
37 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
38 |
+
controlnet_single_block_samples: Tuple[torch.Tensor]
|
39 |
+
|
40 |
+
|
41 |
+
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
42 |
+
_supports_gradient_checkpointing = True
|
43 |
+
|
44 |
+
@register_to_config
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
patch_size: int = 1,
|
48 |
+
in_channels: int = 64,
|
49 |
+
num_layers: int = 19,
|
50 |
+
num_single_layers: int = 38,
|
51 |
+
attention_head_dim: int = 128,
|
52 |
+
num_attention_heads: int = 24,
|
53 |
+
joint_attention_dim: int = 4096,
|
54 |
+
pooled_projection_dim: int = 768,
|
55 |
+
guidance_embeds: bool = False,
|
56 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
57 |
+
num_mode: int = None,
|
58 |
+
conditioning_embedding_channels: int = None,
|
59 |
+
):
|
60 |
+
super().__init__()
|
61 |
+
self.out_channels = in_channels
|
62 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
63 |
+
|
64 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
65 |
+
text_time_guidance_cls = (
|
66 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
67 |
+
)
|
68 |
+
self.time_text_embed = text_time_guidance_cls(
|
69 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
70 |
+
)
|
71 |
+
|
72 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
73 |
+
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
74 |
+
|
75 |
+
self.transformer_blocks = nn.ModuleList(
|
76 |
+
[
|
77 |
+
FluxTransformerBlock(
|
78 |
+
dim=self.inner_dim,
|
79 |
+
num_attention_heads=num_attention_heads,
|
80 |
+
attention_head_dim=attention_head_dim,
|
81 |
+
)
|
82 |
+
for i in range(num_layers)
|
83 |
+
]
|
84 |
+
)
|
85 |
+
|
86 |
+
self.single_transformer_blocks = nn.ModuleList(
|
87 |
+
[
|
88 |
+
FluxSingleTransformerBlock(
|
89 |
+
dim=self.inner_dim,
|
90 |
+
num_attention_heads=num_attention_heads,
|
91 |
+
attention_head_dim=attention_head_dim,
|
92 |
+
)
|
93 |
+
for i in range(num_single_layers)
|
94 |
+
]
|
95 |
+
)
|
96 |
+
|
97 |
+
# controlnet_blocks
|
98 |
+
self.controlnet_blocks = nn.ModuleList([])
|
99 |
+
for _ in range(len(self.transformer_blocks)):
|
100 |
+
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
101 |
+
|
102 |
+
self.controlnet_single_blocks = nn.ModuleList([])
|
103 |
+
for _ in range(len(self.single_transformer_blocks)):
|
104 |
+
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
105 |
+
|
106 |
+
self.union = num_mode is not None
|
107 |
+
if self.union:
|
108 |
+
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
|
109 |
+
|
110 |
+
if conditioning_embedding_channels is not None:
|
111 |
+
self.input_hint_block = ControlNetConditioningEmbedding(
|
112 |
+
conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
|
113 |
+
)
|
114 |
+
self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
115 |
+
else:
|
116 |
+
self.input_hint_block = None
|
117 |
+
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
|
118 |
+
|
119 |
+
self.gradient_checkpointing = False
|
120 |
+
|
121 |
+
@property
|
122 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
123 |
+
def attn_processors(self):
|
124 |
+
r"""
|
125 |
+
Returns:
|
126 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
127 |
+
indexed by its weight name.
|
128 |
+
"""
|
129 |
+
# set recursively
|
130 |
+
processors = {}
|
131 |
+
|
132 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
133 |
+
if hasattr(module, "get_processor"):
|
134 |
+
processors[f"{name}.processor"] = module.get_processor()
|
135 |
+
|
136 |
+
for sub_name, child in module.named_children():
|
137 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
138 |
+
|
139 |
+
return processors
|
140 |
+
|
141 |
+
for name, module in self.named_children():
|
142 |
+
fn_recursive_add_processors(name, module, processors)
|
143 |
+
|
144 |
+
return processors
|
145 |
+
|
146 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
147 |
+
def set_attn_processor(self, processor):
|
148 |
+
r"""
|
149 |
+
Sets the attention processor to use to compute attention.
|
150 |
+
|
151 |
+
Parameters:
|
152 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
153 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
154 |
+
for **all** `Attention` layers.
|
155 |
+
|
156 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
157 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
158 |
+
|
159 |
+
"""
|
160 |
+
count = len(self.attn_processors.keys())
|
161 |
+
|
162 |
+
if isinstance(processor, dict) and len(processor) != count:
|
163 |
+
raise ValueError(
|
164 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
165 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
166 |
+
)
|
167 |
+
|
168 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
169 |
+
if hasattr(module, "set_processor"):
|
170 |
+
if not isinstance(processor, dict):
|
171 |
+
module.set_processor(processor)
|
172 |
+
else:
|
173 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
174 |
+
|
175 |
+
for sub_name, child in module.named_children():
|
176 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
177 |
+
|
178 |
+
for name, module in self.named_children():
|
179 |
+
fn_recursive_attn_processor(name, module, processor)
|
180 |
+
|
181 |
+
@classmethod
|
182 |
+
def from_transformer(
|
183 |
+
cls,
|
184 |
+
transformer,
|
185 |
+
num_layers: int = 4,
|
186 |
+
num_single_layers: int = 10,
|
187 |
+
attention_head_dim: int = 128,
|
188 |
+
num_attention_heads: int = 24,
|
189 |
+
load_weights_from_transformer=True,
|
190 |
+
):
|
191 |
+
config = dict(transformer.config)
|
192 |
+
config["num_layers"] = num_layers
|
193 |
+
config["num_single_layers"] = num_single_layers
|
194 |
+
config["attention_head_dim"] = attention_head_dim
|
195 |
+
config["num_attention_heads"] = num_attention_heads
|
196 |
+
|
197 |
+
controlnet = cls.from_config(config)
|
198 |
+
|
199 |
+
if load_weights_from_transformer:
|
200 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
201 |
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
202 |
+
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
|
203 |
+
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
204 |
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
205 |
+
controlnet.single_transformer_blocks.load_state_dict(
|
206 |
+
transformer.single_transformer_blocks.state_dict(), strict=False
|
207 |
+
)
|
208 |
+
|
209 |
+
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
210 |
+
|
211 |
+
return controlnet
|
212 |
+
|
213 |
+
def forward(
|
214 |
+
self,
|
215 |
+
hidden_states: torch.Tensor,
|
216 |
+
controlnet_cond: torch.Tensor,
|
217 |
+
controlnet_mode: torch.Tensor = None,
|
218 |
+
conditioning_scale: float = 1.0,
|
219 |
+
encoder_hidden_states: torch.Tensor = None,
|
220 |
+
pooled_projections: torch.Tensor = None,
|
221 |
+
timestep: torch.LongTensor = None,
|
222 |
+
img_ids: torch.Tensor = None,
|
223 |
+
txt_ids: torch.Tensor = None,
|
224 |
+
guidance: torch.Tensor = None,
|
225 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
226 |
+
return_dict: bool = True,
|
227 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
228 |
+
"""
|
229 |
+
The [`FluxTransformer2DModel`] forward method.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
233 |
+
Input `hidden_states`.
|
234 |
+
controlnet_cond (`torch.Tensor`):
|
235 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
236 |
+
controlnet_mode (`torch.Tensor`):
|
237 |
+
The mode tensor of shape `(batch_size, 1)`.
|
238 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
239 |
+
The scale factor for ControlNet outputs.
|
240 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
241 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
242 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
243 |
+
from the embeddings of input conditions.
|
244 |
+
timestep ( `torch.LongTensor`):
|
245 |
+
Used to indicate denoising step.
|
246 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
247 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
248 |
+
joint_attention_kwargs (`dict`, *optional*):
|
249 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
250 |
+
`self.processor` in
|
251 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
252 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
253 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
254 |
+
tuple.
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
258 |
+
`tuple` where the first element is the sample tensor.
|
259 |
+
"""
|
260 |
+
if joint_attention_kwargs is not None:
|
261 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
262 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
263 |
+
else:
|
264 |
+
lora_scale = 1.0
|
265 |
+
|
266 |
+
if USE_PEFT_BACKEND:
|
267 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
268 |
+
scale_lora_layers(self, lora_scale)
|
269 |
+
else:
|
270 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
271 |
+
logger.warning(
|
272 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
273 |
+
)
|
274 |
+
hidden_states = self.x_embedder(hidden_states)
|
275 |
+
|
276 |
+
if self.input_hint_block is not None:
|
277 |
+
controlnet_cond = self.input_hint_block(controlnet_cond)
|
278 |
+
batch_size, channels, height_pw, width_pw = controlnet_cond.shape
|
279 |
+
height = height_pw // self.config.patch_size
|
280 |
+
width = width_pw // self.config.patch_size
|
281 |
+
controlnet_cond = controlnet_cond.reshape(
|
282 |
+
batch_size, channels, height, self.config.patch_size, width, self.config.patch_size
|
283 |
+
)
|
284 |
+
controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
|
285 |
+
controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
|
286 |
+
# add
|
287 |
+
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
288 |
+
|
289 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
290 |
+
if guidance is not None:
|
291 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
292 |
+
else:
|
293 |
+
guidance = None
|
294 |
+
temb = (
|
295 |
+
self.time_text_embed(timestep, pooled_projections)
|
296 |
+
if guidance is None
|
297 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
298 |
+
)
|
299 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
300 |
+
|
301 |
+
if txt_ids.ndim == 3:
|
302 |
+
logger.warning(
|
303 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
304 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
305 |
+
)
|
306 |
+
txt_ids = txt_ids[0]
|
307 |
+
if img_ids.ndim == 3:
|
308 |
+
logger.warning(
|
309 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
310 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
311 |
+
)
|
312 |
+
img_ids = img_ids[0]
|
313 |
+
|
314 |
+
if self.union:
|
315 |
+
# union mode
|
316 |
+
if controlnet_mode is None:
|
317 |
+
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
|
318 |
+
# union mode emb
|
319 |
+
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
|
320 |
+
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
|
321 |
+
txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0)
|
322 |
+
|
323 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
324 |
+
image_rotary_emb = self.pos_embed(ids)
|
325 |
+
|
326 |
+
block_samples = ()
|
327 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
328 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
329 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
330 |
+
block,
|
331 |
+
hidden_states,
|
332 |
+
encoder_hidden_states,
|
333 |
+
temb,
|
334 |
+
image_rotary_emb,
|
335 |
+
)
|
336 |
+
|
337 |
+
else:
|
338 |
+
encoder_hidden_states, hidden_states = block(
|
339 |
+
hidden_states=hidden_states,
|
340 |
+
encoder_hidden_states=encoder_hidden_states,
|
341 |
+
temb=temb,
|
342 |
+
image_rotary_emb=image_rotary_emb,
|
343 |
+
)
|
344 |
+
block_samples = block_samples + (hidden_states,)
|
345 |
+
|
346 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
347 |
+
|
348 |
+
single_block_samples = ()
|
349 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
350 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
351 |
+
hidden_states = self._gradient_checkpointing_func(
|
352 |
+
block,
|
353 |
+
hidden_states,
|
354 |
+
temb,
|
355 |
+
image_rotary_emb,
|
356 |
+
)
|
357 |
+
|
358 |
+
else:
|
359 |
+
hidden_states = block(
|
360 |
+
hidden_states=hidden_states,
|
361 |
+
temb=temb,
|
362 |
+
image_rotary_emb=image_rotary_emb,
|
363 |
+
)
|
364 |
+
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
|
365 |
+
|
366 |
+
# controlnet block
|
367 |
+
controlnet_block_samples = ()
|
368 |
+
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
369 |
+
block_sample = controlnet_block(block_sample)
|
370 |
+
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
371 |
+
|
372 |
+
controlnet_single_block_samples = ()
|
373 |
+
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
|
374 |
+
single_block_sample = controlnet_block(single_block_sample)
|
375 |
+
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
|
376 |
+
|
377 |
+
# scaling
|
378 |
+
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
379 |
+
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
|
380 |
+
|
381 |
+
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
382 |
+
controlnet_single_block_samples = (
|
383 |
+
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
|
384 |
+
)
|
385 |
+
|
386 |
+
if USE_PEFT_BACKEND:
|
387 |
+
# remove `lora_scale` from each PEFT layer
|
388 |
+
unscale_lora_layers(self, lora_scale)
|
389 |
+
|
390 |
+
if not return_dict:
|
391 |
+
return (controlnet_block_samples, controlnet_single_block_samples)
|
392 |
+
|
393 |
+
return FluxControlNetOutput(
|
394 |
+
controlnet_block_samples=controlnet_block_samples,
|
395 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
396 |
+
)
|
397 |
+
|
398 |
+
|
399 |
+
class FluxMultiControlNetModel(ModelMixin):
|
400 |
+
r"""
|
401 |
+
`FluxMultiControlNetModel` wrapper class for Multi-FluxControlNetModel
|
402 |
+
|
403 |
+
This module is a wrapper for multiple instances of the `FluxControlNetModel`. The `forward()` API is designed to be
|
404 |
+
compatible with `FluxControlNetModel`.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
controlnets (`List[FluxControlNetModel]`):
|
408 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
409 |
+
`FluxControlNetModel` as a list.
|
410 |
+
"""
|
411 |
+
|
412 |
+
def __init__(self, controlnets):
|
413 |
+
super().__init__()
|
414 |
+
self.nets = nn.ModuleList(controlnets)
|
415 |
+
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
hidden_states: torch.FloatTensor,
|
419 |
+
controlnet_cond: List[torch.tensor],
|
420 |
+
controlnet_mode: List[torch.tensor],
|
421 |
+
conditioning_scale: List[float],
|
422 |
+
encoder_hidden_states: torch.Tensor = None,
|
423 |
+
pooled_projections: torch.Tensor = None,
|
424 |
+
timestep: torch.LongTensor = None,
|
425 |
+
img_ids: torch.Tensor = None,
|
426 |
+
txt_ids: torch.Tensor = None,
|
427 |
+
guidance: torch.Tensor = None,
|
428 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
429 |
+
return_dict: bool = True,
|
430 |
+
) -> Union[FluxControlNetOutput, Tuple]:
|
431 |
+
# ControlNet-Union with multiple conditions
|
432 |
+
# only load one ControlNet for saving memories
|
433 |
+
if len(self.nets) == 1:
|
434 |
+
controlnet = self.nets[0]
|
435 |
+
|
436 |
+
for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
|
437 |
+
block_samples, single_block_samples = controlnet(
|
438 |
+
hidden_states=hidden_states,
|
439 |
+
controlnet_cond=image,
|
440 |
+
controlnet_mode=mode[:, None],
|
441 |
+
conditioning_scale=scale,
|
442 |
+
timestep=timestep,
|
443 |
+
guidance=guidance,
|
444 |
+
pooled_projections=pooled_projections,
|
445 |
+
encoder_hidden_states=encoder_hidden_states,
|
446 |
+
txt_ids=txt_ids,
|
447 |
+
img_ids=img_ids,
|
448 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
449 |
+
return_dict=return_dict,
|
450 |
+
)
|
451 |
+
|
452 |
+
# merge samples
|
453 |
+
if i == 0:
|
454 |
+
control_block_samples = block_samples
|
455 |
+
control_single_block_samples = single_block_samples
|
456 |
+
else:
|
457 |
+
if block_samples is not None and control_block_samples is not None:
|
458 |
+
control_block_samples = [
|
459 |
+
control_block_sample + block_sample
|
460 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
461 |
+
]
|
462 |
+
if single_block_samples is not None and control_single_block_samples is not None:
|
463 |
+
control_single_block_samples = [
|
464 |
+
control_single_block_sample + block_sample
|
465 |
+
for control_single_block_sample, block_sample in zip(
|
466 |
+
control_single_block_samples, single_block_samples
|
467 |
+
)
|
468 |
+
]
|
469 |
+
|
470 |
+
# Regular Multi-ControlNets
|
471 |
+
# load all ControlNets into memories
|
472 |
+
else:
|
473 |
+
for i, (image, mode, scale, controlnet) in enumerate(
|
474 |
+
zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
|
475 |
+
):
|
476 |
+
block_samples, single_block_samples = controlnet(
|
477 |
+
hidden_states=hidden_states,
|
478 |
+
controlnet_cond=image,
|
479 |
+
controlnet_mode=mode[:, None],
|
480 |
+
conditioning_scale=scale,
|
481 |
+
timestep=timestep,
|
482 |
+
guidance=guidance,
|
483 |
+
pooled_projections=pooled_projections,
|
484 |
+
encoder_hidden_states=encoder_hidden_states,
|
485 |
+
txt_ids=txt_ids,
|
486 |
+
img_ids=img_ids,
|
487 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
488 |
+
return_dict=return_dict,
|
489 |
+
)
|
490 |
+
|
491 |
+
# merge samples
|
492 |
+
if i == 0:
|
493 |
+
control_block_samples = block_samples
|
494 |
+
control_single_block_samples = single_block_samples
|
495 |
+
else:
|
496 |
+
if block_samples is not None and control_block_samples is not None:
|
497 |
+
control_block_samples = [
|
498 |
+
control_block_sample + block_sample
|
499 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
500 |
+
]
|
501 |
+
if single_block_samples is not None and control_single_block_samples is not None:
|
502 |
+
control_single_block_samples = [
|
503 |
+
control_single_block_sample + block_sample
|
504 |
+
for control_single_block_sample, block_sample in zip(
|
505 |
+
control_single_block_samples, single_block_samples
|
506 |
+
)
|
507 |
+
]
|
508 |
+
|
509 |
+
return control_block_samples, control_single_block_samples
|
pipeline_flux_controlnet.py
ADDED
@@ -0,0 +1,1181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from transformers import (
|
21 |
+
CLIPImageProcessor,
|
22 |
+
CLIPTextModel,
|
23 |
+
CLIPTokenizer,
|
24 |
+
CLIPVisionModelWithProjection,
|
25 |
+
T5EncoderModel,
|
26 |
+
T5TokenizerFast,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
30 |
+
from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
31 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
32 |
+
|
33 |
+
# from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
|
34 |
+
from controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
|
35 |
+
|
36 |
+
from diffusers.models.transformers import FluxTransformer2DModel
|
37 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
38 |
+
from diffusers.utils import (
|
39 |
+
USE_PEFT_BACKEND,
|
40 |
+
is_torch_xla_available,
|
41 |
+
logging,
|
42 |
+
replace_example_docstring,
|
43 |
+
scale_lora_layers,
|
44 |
+
unscale_lora_layers,
|
45 |
+
)
|
46 |
+
from diffusers.utils.torch_utils import randn_tensor
|
47 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
48 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
49 |
+
|
50 |
+
|
51 |
+
if is_torch_xla_available():
|
52 |
+
import torch_xla.core.xla_model as xm
|
53 |
+
|
54 |
+
XLA_AVAILABLE = True
|
55 |
+
else:
|
56 |
+
XLA_AVAILABLE = False
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
60 |
+
|
61 |
+
EXAMPLE_DOC_STRING = """
|
62 |
+
Examples:
|
63 |
+
```py
|
64 |
+
>>> import torch
|
65 |
+
>>> from diffusers.utils import load_image
|
66 |
+
>>> from diffusers import FluxControlNetPipeline
|
67 |
+
>>> from diffusers import FluxControlNetModel
|
68 |
+
|
69 |
+
>>> base_model = "black-forest-labs/FLUX.1-dev"
|
70 |
+
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"
|
71 |
+
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
72 |
+
>>> pipe = FluxControlNetPipeline.from_pretrained(
|
73 |
+
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
|
74 |
+
... )
|
75 |
+
>>> pipe.to("cuda")
|
76 |
+
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
77 |
+
>>> prompt = "A girl in city, 25 years old, cool, futuristic"
|
78 |
+
>>> image = pipe(
|
79 |
+
... prompt,
|
80 |
+
... control_image=control_image,
|
81 |
+
... control_guidance_start=0.2,
|
82 |
+
... control_guidance_end=0.8,
|
83 |
+
... controlnet_conditioning_scale=1.0,
|
84 |
+
... num_inference_steps=28,
|
85 |
+
... guidance_scale=3.5,
|
86 |
+
... ).images[0]
|
87 |
+
>>> image.save("flux.png")
|
88 |
+
```
|
89 |
+
"""
|
90 |
+
|
91 |
+
|
92 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
93 |
+
def calculate_shift(
|
94 |
+
image_seq_len,
|
95 |
+
base_seq_len: int = 256,
|
96 |
+
max_seq_len: int = 4096,
|
97 |
+
base_shift: float = 0.5,
|
98 |
+
max_shift: float = 1.15,
|
99 |
+
):
|
100 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
101 |
+
b = base_shift - m * base_seq_len
|
102 |
+
mu = image_seq_len * m + b
|
103 |
+
return mu
|
104 |
+
|
105 |
+
|
106 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
107 |
+
def retrieve_latents(
|
108 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
109 |
+
):
|
110 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
111 |
+
return encoder_output.latent_dist.sample(generator)
|
112 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
113 |
+
return encoder_output.latent_dist.mode()
|
114 |
+
elif hasattr(encoder_output, "latents"):
|
115 |
+
return encoder_output.latents
|
116 |
+
else:
|
117 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
118 |
+
|
119 |
+
|
120 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
121 |
+
def retrieve_timesteps(
|
122 |
+
scheduler,
|
123 |
+
num_inference_steps: Optional[int] = None,
|
124 |
+
device: Optional[Union[str, torch.device]] = None,
|
125 |
+
timesteps: Optional[List[int]] = None,
|
126 |
+
sigmas: Optional[List[float]] = None,
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
r"""
|
130 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
131 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
scheduler (`SchedulerMixin`):
|
135 |
+
The scheduler to get timesteps from.
|
136 |
+
num_inference_steps (`int`):
|
137 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
138 |
+
must be `None`.
|
139 |
+
device (`str` or `torch.device`, *optional*):
|
140 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
141 |
+
timesteps (`List[int]`, *optional*):
|
142 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
143 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
144 |
+
sigmas (`List[float]`, *optional*):
|
145 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
146 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
150 |
+
second element is the number of inference steps.
|
151 |
+
"""
|
152 |
+
if timesteps is not None and sigmas is not None:
|
153 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
154 |
+
if timesteps is not None:
|
155 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
156 |
+
if not accepts_timesteps:
|
157 |
+
raise ValueError(
|
158 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
159 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
160 |
+
)
|
161 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
162 |
+
timesteps = scheduler.timesteps
|
163 |
+
num_inference_steps = len(timesteps)
|
164 |
+
elif sigmas is not None:
|
165 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
166 |
+
if not accept_sigmas:
|
167 |
+
raise ValueError(
|
168 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
169 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
170 |
+
)
|
171 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
172 |
+
timesteps = scheduler.timesteps
|
173 |
+
num_inference_steps = len(timesteps)
|
174 |
+
else:
|
175 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
176 |
+
timesteps = scheduler.timesteps
|
177 |
+
return timesteps, num_inference_steps
|
178 |
+
|
179 |
+
|
180 |
+
class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin, FluxIPAdapterMixin):
|
181 |
+
r"""
|
182 |
+
The Flux pipeline for text-to-image generation.
|
183 |
+
|
184 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
185 |
+
|
186 |
+
Args:
|
187 |
+
transformer ([`FluxTransformer2DModel`]):
|
188 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
189 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
190 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
191 |
+
vae ([`AutoencoderKL`]):
|
192 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
193 |
+
text_encoder ([`CLIPTextModel`]):
|
194 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
195 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
196 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
197 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
198 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
199 |
+
tokenizer (`CLIPTokenizer`):
|
200 |
+
Tokenizer of class
|
201 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
202 |
+
tokenizer_2 (`T5TokenizerFast`):
|
203 |
+
Second Tokenizer of class
|
204 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
205 |
+
"""
|
206 |
+
|
207 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
|
208 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
209 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "control_image"]
|
210 |
+
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
214 |
+
vae: AutoencoderKL,
|
215 |
+
text_encoder: CLIPTextModel,
|
216 |
+
tokenizer: CLIPTokenizer,
|
217 |
+
text_encoder_2: T5EncoderModel,
|
218 |
+
tokenizer_2: T5TokenizerFast,
|
219 |
+
transformer: FluxTransformer2DModel,
|
220 |
+
controlnet: Union[
|
221 |
+
FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel
|
222 |
+
],
|
223 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
224 |
+
feature_extractor: CLIPImageProcessor = None,
|
225 |
+
):
|
226 |
+
super().__init__()
|
227 |
+
if isinstance(controlnet, (list, tuple)):
|
228 |
+
controlnet = FluxMultiControlNetModel(controlnet)
|
229 |
+
|
230 |
+
self.register_modules(
|
231 |
+
vae=vae,
|
232 |
+
text_encoder=text_encoder,
|
233 |
+
text_encoder_2=text_encoder_2,
|
234 |
+
tokenizer=tokenizer,
|
235 |
+
tokenizer_2=tokenizer_2,
|
236 |
+
transformer=transformer,
|
237 |
+
scheduler=scheduler,
|
238 |
+
controlnet=controlnet,
|
239 |
+
image_encoder=image_encoder,
|
240 |
+
feature_extractor=feature_extractor,
|
241 |
+
)
|
242 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
243 |
+
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
244 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
245 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
246 |
+
self.tokenizer_max_length = (
|
247 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
248 |
+
)
|
249 |
+
self.default_sample_size = 128
|
250 |
+
|
251 |
+
def _get_t5_prompt_embeds(
|
252 |
+
self,
|
253 |
+
prompt: Union[str, List[str]] = None,
|
254 |
+
num_images_per_prompt: int = 1,
|
255 |
+
max_sequence_length: int = 512,
|
256 |
+
device: Optional[torch.device] = None,
|
257 |
+
dtype: Optional[torch.dtype] = None,
|
258 |
+
):
|
259 |
+
device = device or self._execution_device
|
260 |
+
dtype = dtype or self.text_encoder.dtype
|
261 |
+
|
262 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
263 |
+
batch_size = len(prompt)
|
264 |
+
|
265 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
266 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
267 |
+
|
268 |
+
text_inputs = self.tokenizer_2(
|
269 |
+
prompt,
|
270 |
+
padding="max_length",
|
271 |
+
max_length=max_sequence_length,
|
272 |
+
truncation=True,
|
273 |
+
return_length=False,
|
274 |
+
return_overflowing_tokens=False,
|
275 |
+
return_tensors="pt",
|
276 |
+
)
|
277 |
+
text_input_ids = text_inputs.input_ids
|
278 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
279 |
+
|
280 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
281 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
282 |
+
logger.warning(
|
283 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
284 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
285 |
+
)
|
286 |
+
|
287 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
288 |
+
|
289 |
+
dtype = self.text_encoder_2.dtype
|
290 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
291 |
+
|
292 |
+
_, seq_len, _ = prompt_embeds.shape
|
293 |
+
|
294 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
295 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
296 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
297 |
+
|
298 |
+
return prompt_embeds
|
299 |
+
|
300 |
+
def _get_clip_prompt_embeds(
|
301 |
+
self,
|
302 |
+
prompt: Union[str, List[str]],
|
303 |
+
num_images_per_prompt: int = 1,
|
304 |
+
device: Optional[torch.device] = None,
|
305 |
+
):
|
306 |
+
device = device or self._execution_device
|
307 |
+
|
308 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
309 |
+
batch_size = len(prompt)
|
310 |
+
|
311 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
312 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
313 |
+
|
314 |
+
text_inputs = self.tokenizer(
|
315 |
+
prompt,
|
316 |
+
padding="max_length",
|
317 |
+
max_length=self.tokenizer_max_length,
|
318 |
+
truncation=True,
|
319 |
+
return_overflowing_tokens=False,
|
320 |
+
return_length=False,
|
321 |
+
return_tensors="pt",
|
322 |
+
)
|
323 |
+
|
324 |
+
text_input_ids = text_inputs.input_ids
|
325 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
326 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
327 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
328 |
+
logger.warning(
|
329 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
330 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
331 |
+
)
|
332 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
333 |
+
|
334 |
+
# Use pooled output of CLIPTextModel
|
335 |
+
prompt_embeds = prompt_embeds.pooler_output
|
336 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
337 |
+
|
338 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
339 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
340 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
341 |
+
|
342 |
+
return prompt_embeds
|
343 |
+
|
344 |
+
def encode_prompt(
|
345 |
+
self,
|
346 |
+
prompt: Union[str, List[str]],
|
347 |
+
prompt_2: Union[str, List[str]],
|
348 |
+
device: Optional[torch.device] = None,
|
349 |
+
num_images_per_prompt: int = 1,
|
350 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
351 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
352 |
+
max_sequence_length: int = 512,
|
353 |
+
lora_scale: Optional[float] = None,
|
354 |
+
):
|
355 |
+
r"""
|
356 |
+
|
357 |
+
Args:
|
358 |
+
prompt (`str` or `List[str]`, *optional*):
|
359 |
+
prompt to be encoded
|
360 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
361 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
362 |
+
used in all text-encoders
|
363 |
+
device: (`torch.device`):
|
364 |
+
torch device
|
365 |
+
num_images_per_prompt (`int`):
|
366 |
+
number of images that should be generated per prompt
|
367 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
368 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
369 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
370 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
371 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
372 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
373 |
+
clip_skip (`int`, *optional*):
|
374 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
375 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
376 |
+
lora_scale (`float`, *optional*):
|
377 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
378 |
+
"""
|
379 |
+
device = device or self._execution_device
|
380 |
+
|
381 |
+
# set lora scale so that monkey patched LoRA
|
382 |
+
# function of text encoder can correctly access it
|
383 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
384 |
+
self._lora_scale = lora_scale
|
385 |
+
|
386 |
+
# dynamically adjust the LoRA scale
|
387 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
388 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
389 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
390 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
391 |
+
|
392 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
393 |
+
|
394 |
+
if prompt_embeds is None:
|
395 |
+
prompt_2 = prompt_2 or prompt
|
396 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
397 |
+
|
398 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
399 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
400 |
+
prompt=prompt,
|
401 |
+
device=device,
|
402 |
+
num_images_per_prompt=num_images_per_prompt,
|
403 |
+
)
|
404 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
405 |
+
prompt=prompt_2,
|
406 |
+
num_images_per_prompt=num_images_per_prompt,
|
407 |
+
max_sequence_length=max_sequence_length,
|
408 |
+
device=device,
|
409 |
+
)
|
410 |
+
|
411 |
+
if self.text_encoder is not None:
|
412 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
413 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
414 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
415 |
+
|
416 |
+
if self.text_encoder_2 is not None:
|
417 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
418 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
419 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
420 |
+
|
421 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
422 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
423 |
+
|
424 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
425 |
+
|
426 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image
|
427 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
428 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
429 |
+
|
430 |
+
if not isinstance(image, torch.Tensor):
|
431 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
432 |
+
|
433 |
+
image = image.to(device=device, dtype=dtype)
|
434 |
+
image_embeds = self.image_encoder(image).image_embeds
|
435 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
436 |
+
return image_embeds
|
437 |
+
|
438 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds
|
439 |
+
def prepare_ip_adapter_image_embeds(
|
440 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
|
441 |
+
):
|
442 |
+
image_embeds = []
|
443 |
+
if ip_adapter_image_embeds is None:
|
444 |
+
if not isinstance(ip_adapter_image, list):
|
445 |
+
ip_adapter_image = [ip_adapter_image]
|
446 |
+
|
447 |
+
if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
448 |
+
raise ValueError(
|
449 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
450 |
+
)
|
451 |
+
|
452 |
+
for single_ip_adapter_image in ip_adapter_image:
|
453 |
+
single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
|
454 |
+
image_embeds.append(single_image_embeds[None, :])
|
455 |
+
else:
|
456 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
457 |
+
ip_adapter_image_embeds = [ip_adapter_image_embeds]
|
458 |
+
|
459 |
+
if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
460 |
+
raise ValueError(
|
461 |
+
f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
462 |
+
)
|
463 |
+
|
464 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
465 |
+
image_embeds.append(single_image_embeds)
|
466 |
+
|
467 |
+
ip_adapter_image_embeds = []
|
468 |
+
for single_image_embeds in image_embeds:
|
469 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
470 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
471 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
472 |
+
|
473 |
+
return ip_adapter_image_embeds
|
474 |
+
|
475 |
+
def check_inputs(
|
476 |
+
self,
|
477 |
+
prompt,
|
478 |
+
prompt_2,
|
479 |
+
height,
|
480 |
+
width,
|
481 |
+
negative_prompt=None,
|
482 |
+
negative_prompt_2=None,
|
483 |
+
prompt_embeds=None,
|
484 |
+
negative_prompt_embeds=None,
|
485 |
+
pooled_prompt_embeds=None,
|
486 |
+
negative_pooled_prompt_embeds=None,
|
487 |
+
callback_on_step_end_tensor_inputs=None,
|
488 |
+
max_sequence_length=None,
|
489 |
+
):
|
490 |
+
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
491 |
+
logger.warning(
|
492 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
493 |
+
)
|
494 |
+
|
495 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
496 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
497 |
+
):
|
498 |
+
raise ValueError(
|
499 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
500 |
+
)
|
501 |
+
|
502 |
+
if prompt is not None and prompt_embeds is not None:
|
503 |
+
raise ValueError(
|
504 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
505 |
+
" only forward one of the two."
|
506 |
+
)
|
507 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
508 |
+
raise ValueError(
|
509 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
510 |
+
" only forward one of the two."
|
511 |
+
)
|
512 |
+
elif prompt is None and prompt_embeds is None:
|
513 |
+
raise ValueError(
|
514 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
515 |
+
)
|
516 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
517 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
518 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
519 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
520 |
+
|
521 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
522 |
+
raise ValueError(
|
523 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
524 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
525 |
+
)
|
526 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
527 |
+
raise ValueError(
|
528 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
529 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
530 |
+
)
|
531 |
+
|
532 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
533 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
534 |
+
raise ValueError(
|
535 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
536 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
537 |
+
f" {negative_prompt_embeds.shape}."
|
538 |
+
)
|
539 |
+
|
540 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
541 |
+
raise ValueError(
|
542 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
543 |
+
)
|
544 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
545 |
+
raise ValueError(
|
546 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
547 |
+
)
|
548 |
+
|
549 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
550 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
551 |
+
|
552 |
+
@staticmethod
|
553 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
|
554 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
555 |
+
latent_image_ids = torch.zeros(height, width, 3)
|
556 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
|
557 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
|
558 |
+
|
559 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
560 |
+
|
561 |
+
latent_image_ids = latent_image_ids.reshape(
|
562 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
563 |
+
)
|
564 |
+
|
565 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
566 |
+
|
567 |
+
@staticmethod
|
568 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
|
569 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
570 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
571 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
572 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
573 |
+
|
574 |
+
return latents
|
575 |
+
|
576 |
+
@staticmethod
|
577 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
|
578 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
579 |
+
batch_size, num_patches, channels = latents.shape
|
580 |
+
|
581 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
582 |
+
# latent height and width to be divisible by 2.
|
583 |
+
height = 2 * (int(height) // (vae_scale_factor * 2))
|
584 |
+
width = 2 * (int(width) // (vae_scale_factor * 2))
|
585 |
+
|
586 |
+
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
587 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
588 |
+
|
589 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
|
590 |
+
|
591 |
+
return latents
|
592 |
+
|
593 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
|
594 |
+
def prepare_latents(
|
595 |
+
self,
|
596 |
+
batch_size,
|
597 |
+
num_channels_latents,
|
598 |
+
height,
|
599 |
+
width,
|
600 |
+
dtype,
|
601 |
+
device,
|
602 |
+
generator,
|
603 |
+
latents=None,
|
604 |
+
):
|
605 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
606 |
+
# latent height and width to be divisible by 2.
|
607 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
608 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
609 |
+
|
610 |
+
shape = (batch_size, num_channels_latents, height, width)
|
611 |
+
|
612 |
+
if latents is not None:
|
613 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
614 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
615 |
+
|
616 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
617 |
+
raise ValueError(
|
618 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
619 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
620 |
+
)
|
621 |
+
|
622 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
623 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
624 |
+
|
625 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
626 |
+
|
627 |
+
return latents, latent_image_ids
|
628 |
+
|
629 |
+
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
|
630 |
+
def prepare_image(
|
631 |
+
self,
|
632 |
+
image,
|
633 |
+
width,
|
634 |
+
height,
|
635 |
+
batch_size,
|
636 |
+
num_images_per_prompt,
|
637 |
+
device,
|
638 |
+
dtype,
|
639 |
+
do_classifier_free_guidance=False,
|
640 |
+
guess_mode=False,
|
641 |
+
):
|
642 |
+
if isinstance(image, torch.Tensor):
|
643 |
+
pass
|
644 |
+
else:
|
645 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
646 |
+
|
647 |
+
image_batch_size = image.shape[0]
|
648 |
+
|
649 |
+
if image_batch_size == 1:
|
650 |
+
repeat_by = batch_size
|
651 |
+
else:
|
652 |
+
# image batch size is the same as prompt batch size
|
653 |
+
repeat_by = num_images_per_prompt
|
654 |
+
|
655 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
656 |
+
|
657 |
+
image = image.to(device=device, dtype=dtype)
|
658 |
+
|
659 |
+
if do_classifier_free_guidance and not guess_mode:
|
660 |
+
image = torch.cat([image] * 2)
|
661 |
+
|
662 |
+
return image
|
663 |
+
|
664 |
+
@property
|
665 |
+
def guidance_scale(self):
|
666 |
+
return self._guidance_scale
|
667 |
+
|
668 |
+
@property
|
669 |
+
def joint_attention_kwargs(self):
|
670 |
+
return self._joint_attention_kwargs
|
671 |
+
|
672 |
+
@property
|
673 |
+
def num_timesteps(self):
|
674 |
+
return self._num_timesteps
|
675 |
+
|
676 |
+
@property
|
677 |
+
def interrupt(self):
|
678 |
+
return self._interrupt
|
679 |
+
|
680 |
+
@torch.no_grad()
|
681 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
682 |
+
def __call__(
|
683 |
+
self,
|
684 |
+
prompt: Union[str, List[str]] = None,
|
685 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
686 |
+
negative_prompt: Union[str, List[str]] = None,
|
687 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
688 |
+
true_cfg_scale: float = 1.0,
|
689 |
+
height: Optional[int] = None,
|
690 |
+
width: Optional[int] = None,
|
691 |
+
num_inference_steps: int = 28,
|
692 |
+
sigmas: Optional[List[float]] = None,
|
693 |
+
guidance_scale: float = 7.0,
|
694 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
695 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
696 |
+
control_image: PipelineImageInput = None,
|
697 |
+
control_mode: Optional[Union[int, List[int]]] = None,
|
698 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
699 |
+
num_images_per_prompt: Optional[int] = 1,
|
700 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
701 |
+
latents: Optional[torch.FloatTensor] = None,
|
702 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
703 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
704 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
705 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
706 |
+
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
|
707 |
+
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
708 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
709 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
710 |
+
output_type: Optional[str] = "pil",
|
711 |
+
return_dict: bool = True,
|
712 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
713 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
714 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
715 |
+
max_sequence_length: int = 512,
|
716 |
+
):
|
717 |
+
r"""
|
718 |
+
Function invoked when calling the pipeline for generation.
|
719 |
+
|
720 |
+
Args:
|
721 |
+
prompt (`str` or `List[str]`, *optional*):
|
722 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
723 |
+
instead.
|
724 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
725 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
726 |
+
will be used instead
|
727 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
728 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
729 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
730 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
731 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
732 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
733 |
+
expense of slower inference.
|
734 |
+
sigmas (`List[float]`, *optional*):
|
735 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
736 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
737 |
+
will be used.
|
738 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
739 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
740 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
741 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
742 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
743 |
+
usually at the expense of lower image quality.
|
744 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
745 |
+
The percentage of total steps at which the ControlNet starts applying.
|
746 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
747 |
+
The percentage of total steps at which the ControlNet stops applying.
|
748 |
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
749 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
750 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
751 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
752 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
753 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
754 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
755 |
+
to a single ControlNet.
|
756 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
757 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
758 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
759 |
+
the corresponding scale as a list.
|
760 |
+
control_mode (`int` or `List[int]`,, *optional*, defaults to None):
|
761 |
+
The control mode when applying ControlNet-Union.
|
762 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
763 |
+
The number of images to generate per prompt.
|
764 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
765 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
766 |
+
to make generation deterministic.
|
767 |
+
latents (`torch.FloatTensor`, *optional*):
|
768 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
769 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
770 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
771 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
772 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
773 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
774 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
775 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
776 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
777 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
778 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
779 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
780 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
781 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
782 |
+
negative_ip_adapter_image:
|
783 |
+
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
784 |
+
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
785 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
786 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
787 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
788 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
789 |
+
The output format of the generate image. Choose between
|
790 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
791 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
792 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
793 |
+
joint_attention_kwargs (`dict`, *optional*):
|
794 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
795 |
+
`self.processor` in
|
796 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
797 |
+
callback_on_step_end (`Callable`, *optional*):
|
798 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
799 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
800 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
801 |
+
`callback_on_step_end_tensor_inputs`.
|
802 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
803 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
804 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
805 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
806 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
807 |
+
|
808 |
+
Examples:
|
809 |
+
|
810 |
+
Returns:
|
811 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
812 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
813 |
+
images.
|
814 |
+
"""
|
815 |
+
|
816 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
817 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
818 |
+
|
819 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
820 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
821 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
822 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
823 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
824 |
+
mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
|
825 |
+
control_guidance_start, control_guidance_end = (
|
826 |
+
mult * [control_guidance_start],
|
827 |
+
mult * [control_guidance_end],
|
828 |
+
)
|
829 |
+
|
830 |
+
# 1. Check inputs. Raise error if not correct
|
831 |
+
self.check_inputs(
|
832 |
+
prompt,
|
833 |
+
prompt_2,
|
834 |
+
height,
|
835 |
+
width,
|
836 |
+
negative_prompt=negative_prompt,
|
837 |
+
negative_prompt_2=negative_prompt_2,
|
838 |
+
prompt_embeds=prompt_embeds,
|
839 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
840 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
841 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
842 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
843 |
+
max_sequence_length=max_sequence_length,
|
844 |
+
)
|
845 |
+
|
846 |
+
self._guidance_scale = guidance_scale
|
847 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
848 |
+
self._interrupt = False
|
849 |
+
|
850 |
+
# 2. Define call parameters
|
851 |
+
if prompt is not None and isinstance(prompt, str):
|
852 |
+
batch_size = 1
|
853 |
+
elif prompt is not None and isinstance(prompt, list):
|
854 |
+
batch_size = len(prompt)
|
855 |
+
else:
|
856 |
+
batch_size = prompt_embeds.shape[0]
|
857 |
+
|
858 |
+
device = self._execution_device
|
859 |
+
dtype = self.transformer.dtype
|
860 |
+
|
861 |
+
# 3. Prepare text embeddings
|
862 |
+
lora_scale = (
|
863 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
864 |
+
)
|
865 |
+
do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None
|
866 |
+
(
|
867 |
+
prompt_embeds,
|
868 |
+
pooled_prompt_embeds,
|
869 |
+
text_ids,
|
870 |
+
) = self.encode_prompt(
|
871 |
+
prompt=prompt,
|
872 |
+
prompt_2=prompt_2,
|
873 |
+
prompt_embeds=prompt_embeds,
|
874 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
875 |
+
device=device,
|
876 |
+
num_images_per_prompt=num_images_per_prompt,
|
877 |
+
max_sequence_length=max_sequence_length,
|
878 |
+
lora_scale=lora_scale,
|
879 |
+
)
|
880 |
+
if do_true_cfg:
|
881 |
+
(
|
882 |
+
negative_prompt_embeds,
|
883 |
+
negative_pooled_prompt_embeds,
|
884 |
+
_,
|
885 |
+
) = self.encode_prompt(
|
886 |
+
prompt=negative_prompt,
|
887 |
+
prompt_2=negative_prompt_2,
|
888 |
+
prompt_embeds=negative_prompt_embeds,
|
889 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
890 |
+
device=device,
|
891 |
+
num_images_per_prompt=num_images_per_prompt,
|
892 |
+
max_sequence_length=max_sequence_length,
|
893 |
+
lora_scale=lora_scale,
|
894 |
+
)
|
895 |
+
|
896 |
+
# 3. Prepare control image
|
897 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
898 |
+
if isinstance(self.controlnet, FluxControlNetModel):
|
899 |
+
control_image = self.prepare_image(
|
900 |
+
image=control_image,
|
901 |
+
width=width,
|
902 |
+
height=height,
|
903 |
+
batch_size=batch_size * num_images_per_prompt,
|
904 |
+
num_images_per_prompt=num_images_per_prompt,
|
905 |
+
device=device,
|
906 |
+
dtype=self.vae.dtype,
|
907 |
+
)
|
908 |
+
height, width = control_image.shape[-2:]
|
909 |
+
|
910 |
+
# xlab controlnet has a input_hint_block and instantx controlnet does not
|
911 |
+
controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
|
912 |
+
if self.controlnet.input_hint_block is None:
|
913 |
+
# vae encode
|
914 |
+
control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
|
915 |
+
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
916 |
+
|
917 |
+
# pack
|
918 |
+
height_control_image, width_control_image = control_image.shape[2:]
|
919 |
+
control_image = self._pack_latents(
|
920 |
+
control_image,
|
921 |
+
batch_size * num_images_per_prompt,
|
922 |
+
num_channels_latents,
|
923 |
+
height_control_image,
|
924 |
+
width_control_image,
|
925 |
+
)
|
926 |
+
|
927 |
+
# Here we ensure that `control_mode` has the same length as the control_image.
|
928 |
+
if control_mode is not None:
|
929 |
+
if not isinstance(control_mode, int):
|
930 |
+
raise ValueError(" For `FluxControlNet`, `control_mode` should be an `int` or `None`")
|
931 |
+
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
|
932 |
+
control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
|
933 |
+
|
934 |
+
elif isinstance(self.controlnet, FluxMultiControlNetModel):
|
935 |
+
control_images = []
|
936 |
+
# xlab controlnet has a input_hint_block and instantx controlnet does not
|
937 |
+
controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True
|
938 |
+
for i, control_image_ in enumerate(control_image):
|
939 |
+
control_image_ = self.prepare_image(
|
940 |
+
image=control_image_,
|
941 |
+
width=width,
|
942 |
+
height=height,
|
943 |
+
batch_size=batch_size * num_images_per_prompt,
|
944 |
+
num_images_per_prompt=num_images_per_prompt,
|
945 |
+
device=device,
|
946 |
+
dtype=self.vae.dtype,
|
947 |
+
)
|
948 |
+
height, width = control_image_.shape[-2:]
|
949 |
+
|
950 |
+
if self.controlnet.nets[0].input_hint_block is None:
|
951 |
+
# vae encode
|
952 |
+
control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
|
953 |
+
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
954 |
+
|
955 |
+
# pack
|
956 |
+
height_control_image, width_control_image = control_image_.shape[2:]
|
957 |
+
control_image_ = self._pack_latents(
|
958 |
+
control_image_,
|
959 |
+
batch_size * num_images_per_prompt,
|
960 |
+
num_channels_latents,
|
961 |
+
height_control_image,
|
962 |
+
width_control_image,
|
963 |
+
)
|
964 |
+
control_images.append(control_image_)
|
965 |
+
|
966 |
+
control_image = control_images
|
967 |
+
|
968 |
+
# Here we ensure that `control_mode` has the same length as the control_image.
|
969 |
+
if isinstance(control_mode, list) and len(control_mode) != len(control_image):
|
970 |
+
raise ValueError(
|
971 |
+
"For Multi-ControlNet, `control_mode` must be a list of the same "
|
972 |
+
+ " length as the number of controlnets (control images) specified"
|
973 |
+
)
|
974 |
+
if not isinstance(control_mode, list):
|
975 |
+
control_mode = [control_mode] * len(control_image)
|
976 |
+
# set control mode
|
977 |
+
control_modes = []
|
978 |
+
for cmode in control_mode:
|
979 |
+
if cmode is None:
|
980 |
+
cmode = -1
|
981 |
+
control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
|
982 |
+
control_modes.append(control_mode)
|
983 |
+
control_mode = control_modes
|
984 |
+
|
985 |
+
# 4. Prepare latent variables
|
986 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
987 |
+
latents, latent_image_ids = self.prepare_latents(
|
988 |
+
batch_size * num_images_per_prompt,
|
989 |
+
num_channels_latents,
|
990 |
+
height,
|
991 |
+
width,
|
992 |
+
prompt_embeds.dtype,
|
993 |
+
device,
|
994 |
+
generator,
|
995 |
+
latents,
|
996 |
+
)
|
997 |
+
|
998 |
+
# 5. Prepare timesteps
|
999 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
1000 |
+
image_seq_len = latents.shape[1]
|
1001 |
+
mu = calculate_shift(
|
1002 |
+
image_seq_len,
|
1003 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
1004 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
1005 |
+
self.scheduler.config.get("base_shift", 0.5),
|
1006 |
+
self.scheduler.config.get("max_shift", 1.15),
|
1007 |
+
)
|
1008 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1009 |
+
self.scheduler,
|
1010 |
+
num_inference_steps,
|
1011 |
+
device,
|
1012 |
+
sigmas=sigmas,
|
1013 |
+
mu=mu,
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1017 |
+
self._num_timesteps = len(timesteps)
|
1018 |
+
|
1019 |
+
# 6. Create tensor stating which controlnets to keep
|
1020 |
+
controlnet_keep = []
|
1021 |
+
for i in range(len(timesteps)):
|
1022 |
+
keeps = [
|
1023 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1024 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1025 |
+
]
|
1026 |
+
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
|
1027 |
+
|
1028 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
|
1029 |
+
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
|
1030 |
+
):
|
1031 |
+
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
1032 |
+
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
|
1033 |
+
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
|
1034 |
+
):
|
1035 |
+
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
1036 |
+
|
1037 |
+
if self.joint_attention_kwargs is None:
|
1038 |
+
self._joint_attention_kwargs = {}
|
1039 |
+
|
1040 |
+
image_embeds = None
|
1041 |
+
negative_image_embeds = None
|
1042 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1043 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1044 |
+
ip_adapter_image,
|
1045 |
+
ip_adapter_image_embeds,
|
1046 |
+
device,
|
1047 |
+
batch_size * num_images_per_prompt,
|
1048 |
+
)
|
1049 |
+
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
|
1050 |
+
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
|
1051 |
+
negative_ip_adapter_image,
|
1052 |
+
negative_ip_adapter_image_embeds,
|
1053 |
+
device,
|
1054 |
+
batch_size * num_images_per_prompt,
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
# 7. Denoising loop
|
1058 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1059 |
+
for i, t in enumerate(timesteps):
|
1060 |
+
if self.interrupt:
|
1061 |
+
continue
|
1062 |
+
|
1063 |
+
if image_embeds is not None:
|
1064 |
+
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
|
1065 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1066 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
1067 |
+
|
1068 |
+
if isinstance(self.controlnet, FluxMultiControlNetModel):
|
1069 |
+
use_guidance = self.controlnet.nets[0].config.guidance_embeds
|
1070 |
+
else:
|
1071 |
+
use_guidance = self.controlnet.config.guidance_embeds
|
1072 |
+
|
1073 |
+
guidance = torch.tensor([guidance_scale], device=device) if use_guidance else None
|
1074 |
+
guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
|
1075 |
+
|
1076 |
+
if isinstance(controlnet_keep[i], list):
|
1077 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1078 |
+
else:
|
1079 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1080 |
+
if isinstance(controlnet_cond_scale, list):
|
1081 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1082 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1083 |
+
|
1084 |
+
# controlnet
|
1085 |
+
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
|
1086 |
+
hidden_states=latents,
|
1087 |
+
controlnet_cond=control_image,
|
1088 |
+
controlnet_mode=control_mode,
|
1089 |
+
conditioning_scale=cond_scale,
|
1090 |
+
timestep=timestep / 1000,
|
1091 |
+
guidance=guidance,
|
1092 |
+
pooled_projections=pooled_prompt_embeds,
|
1093 |
+
encoder_hidden_states=prompt_embeds,
|
1094 |
+
txt_ids=text_ids,
|
1095 |
+
img_ids=latent_image_ids,
|
1096 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1097 |
+
return_dict=False,
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
guidance = (
|
1101 |
+
torch.tensor([guidance_scale], device=device) if self.transformer.config.guidance_embeds else None
|
1102 |
+
)
|
1103 |
+
guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
|
1104 |
+
|
1105 |
+
noise_pred = self.transformer(
|
1106 |
+
hidden_states=latents,
|
1107 |
+
timestep=timestep / 1000,
|
1108 |
+
guidance=guidance,
|
1109 |
+
pooled_projections=pooled_prompt_embeds,
|
1110 |
+
encoder_hidden_states=prompt_embeds,
|
1111 |
+
controlnet_block_samples=controlnet_block_samples,
|
1112 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
1113 |
+
txt_ids=text_ids,
|
1114 |
+
img_ids=latent_image_ids,
|
1115 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1116 |
+
return_dict=False,
|
1117 |
+
controlnet_blocks_repeat=controlnet_blocks_repeat,
|
1118 |
+
)[0]
|
1119 |
+
|
1120 |
+
if do_true_cfg:
|
1121 |
+
if negative_image_embeds is not None:
|
1122 |
+
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
|
1123 |
+
neg_noise_pred = self.transformer(
|
1124 |
+
hidden_states=latents,
|
1125 |
+
timestep=timestep / 1000,
|
1126 |
+
guidance=guidance,
|
1127 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
1128 |
+
encoder_hidden_states=negative_prompt_embeds,
|
1129 |
+
controlnet_block_samples=controlnet_block_samples,
|
1130 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
1131 |
+
txt_ids=text_ids,
|
1132 |
+
img_ids=latent_image_ids,
|
1133 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1134 |
+
return_dict=False,
|
1135 |
+
controlnet_blocks_repeat=controlnet_blocks_repeat,
|
1136 |
+
)[0]
|
1137 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
1138 |
+
|
1139 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1140 |
+
latents_dtype = latents.dtype
|
1141 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1142 |
+
|
1143 |
+
if latents.dtype != latents_dtype:
|
1144 |
+
if torch.backends.mps.is_available():
|
1145 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1146 |
+
latents = latents.to(latents_dtype)
|
1147 |
+
|
1148 |
+
if callback_on_step_end is not None:
|
1149 |
+
callback_kwargs = {}
|
1150 |
+
for k in callback_on_step_end_tensor_inputs:
|
1151 |
+
callback_kwargs[k] = locals()[k]
|
1152 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1153 |
+
|
1154 |
+
latents = callback_outputs.pop("latents", latents)
|
1155 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1156 |
+
control_image = callback_outputs.pop("control_image", control_image)
|
1157 |
+
|
1158 |
+
# call the callback, if provided
|
1159 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1160 |
+
progress_bar.update()
|
1161 |
+
|
1162 |
+
if XLA_AVAILABLE:
|
1163 |
+
xm.mark_step()
|
1164 |
+
|
1165 |
+
if output_type == "latent":
|
1166 |
+
image = latents
|
1167 |
+
|
1168 |
+
else:
|
1169 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
1170 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1171 |
+
|
1172 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1173 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1174 |
+
|
1175 |
+
# Offload all models
|
1176 |
+
self.maybe_free_model_hooks()
|
1177 |
+
|
1178 |
+
if not return_dict:
|
1179 |
+
return (image,)
|
1180 |
+
|
1181 |
+
return FluxPipelineOutput(images=image)
|