--- license: apache-2.0 tags: - code-generation - t5 - lora - peft - transformers library_name: peft base_model: t5-small datasets: nvidia/OpenCodeReasoning model-index: - name: T5-Small with LoRA on OpenCodeReasoning results: - task: type: text2text-generation name: Code Generation dataset: name: OpenCodeReasoning type: nvidia/OpenCodeReasoning metrics: - name: Loss type: loss value: 4.69 --- # T5-Small with LoRA on OpenCodeReasoning This is a LoRA fine-tuned version of T5-small on a subset of NVIDIA's OpenCodeReasoning dataset using [PEFT](https://github.com/huggingface/peft). Improved version to be uploaded soon. ## Loss Curve | Step | Train Loss | Val Loss | |------|------------|----------| | 50 | 8.63 | 8.17 | | 100 | 6.04 | 5.35 | | 150 | 5.31 | 4.90 | | 200 | 5.19 | 4.71 | | 250 | 4.94 | 4.59 | | 300 | 4.95 | 4.51 | | 350 | 4.79 | 4.46 | | 400 | 4.89 | 4.42 | | 450 | 4.69 | 4.40 | Final Train Loss: **4.69** Final Eval Loss: **4.40** ## Notes Trained on subset of OpenCodeReasoning due to Colab memory limits Use PeftModel with t5-small base Metrics used: Loss (BLEU skipped due to output structure) ## License Apache 2.0 ## Example Usage ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from peft import PeftModel, PeftConfig config = PeftConfig.from_pretrained("ShahzebKhoso/t5-small-opencode-lora") base_model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(base_model, "ShahzebKhoso/t5-small-opencode-lora") tokenizer = AutoTokenizer.from_pretrained("ShahzebKhoso/t5-small-opencode-lora") inputs = tokenizer("generate code: write a function to reverse a string", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) '''