ShahzebKhoso commited on
Commit
f84482f
·
verified ·
1 Parent(s): 035474b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -4
README.md CHANGED
@@ -22,12 +22,13 @@ model-index:
22
  metrics:
23
  - name: Loss
24
  type: loss
25
- value: 4.4
26
  ---
27
 
28
  # T5-Small with LoRA on OpenCodeReasoning
29
 
30
  This is a LoRA fine-tuned version of T5-small on a subset of NVIDIA's OpenCodeReasoning dataset using [PEFT](https://github.com/huggingface/peft).
 
31
 
32
  ## Loss Curve
33
 
@@ -43,7 +44,8 @@ This is a LoRA fine-tuned version of T5-small on a subset of NVIDIA's OpenCodeRe
43
  | 400 | 4.89 | 4.42 |
44
  | 450 | 4.69 | 4.40 |
45
 
46
- Final Train Loss: **5.71**
 
47
 
48
  ## Example Usage
49
 
@@ -59,8 +61,9 @@ tokenizer = AutoTokenizer.from_pretrained("ShahzebKhoso/t5-small-opencode-lora")
59
  inputs = tokenizer("generate code: write a function to reverse a string", return_tensors="pt")
60
  outputs = model.generate(**inputs)
61
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
62
 
63
- Notes
64
 
65
  Trained on subset of OpenCodeReasoning due to Colab memory limits
66
 
@@ -69,6 +72,6 @@ Use PeftModel with t5-small base
69
  Metrics used: Loss (BLEU skipped due to output structure)
70
 
71
 
72
- License
73
 
74
  Apache 2.0
 
22
  metrics:
23
  - name: Loss
24
  type: loss
25
+ value: 4.69
26
  ---
27
 
28
  # T5-Small with LoRA on OpenCodeReasoning
29
 
30
  This is a LoRA fine-tuned version of T5-small on a subset of NVIDIA's OpenCodeReasoning dataset using [PEFT](https://github.com/huggingface/peft).
31
+ Improved version to be uploaded soon.
32
 
33
  ## Loss Curve
34
 
 
44
  | 400 | 4.89 | 4.42 |
45
  | 450 | 4.69 | 4.40 |
46
 
47
+ Final Train Loss: **4.69**
48
+ Final Eval Loss: **4.40**
49
 
50
  ## Example Usage
51
 
 
61
  inputs = tokenizer("generate code: write a function to reverse a string", return_tensors="pt")
62
  outputs = model.generate(**inputs)
63
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
64
+ '''
65
 
66
+ ## Notes
67
 
68
  Trained on subset of OpenCodeReasoning due to Colab memory limits
69
 
 
72
  Metrics used: Loss (BLEU skipped due to output structure)
73
 
74
 
75
+ ## License
76
 
77
  Apache 2.0