--- license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8414992097538948 - name: Recall type: recall value: 0.8563878676470589 - name: F1 type: f1 value: 0.8488782598792848 - name: Accuracy type: accuracy value: 0.9704469377634515 --- # NER-finetuning-BETO This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2009 - Precision: 0.8415 - Recall: 0.8564 - F1: 0.8489 - Accuracy: 0.9704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0499 | 1.0 | 1041 | 0.1461 | 0.8328 | 0.8573 | 0.8449 | 0.9695 | | 0.0288 | 2.0 | 2082 | 0.1672 | 0.8244 | 0.8564 | 0.8401 | 0.9694 | | 0.0173 | 3.0 | 3123 | 0.1694 | 0.8487 | 0.8672 | 0.8578 | 0.9715 | | 0.0119 | 4.0 | 4164 | 0.2023 | 0.8434 | 0.8525 | 0.8479 | 0.9695 | | 0.0084 | 5.0 | 5205 | 0.2009 | 0.8415 | 0.8564 | 0.8489 | 0.9704 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1