--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert_finetune_own_data_model results: [] --- # distilbert_finetune_own_data_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0053 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 3 | 0.8131 | 1.0 | 0.25 | 0.4 | 0.76 | | No log | 2.0 | 6 | 0.6099 | 1.0 | 0.25 | 0.4 | 0.76 | | No log | 3.0 | 9 | 0.4666 | 1.0 | 0.25 | 0.4 | 0.76 | | No log | 4.0 | 12 | 0.3527 | 1.0 | 0.625 | 0.7692 | 0.88 | | No log | 5.0 | 15 | 0.2583 | 1.0 | 0.875 | 0.9333 | 0.96 | | No log | 6.0 | 18 | 0.1838 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 7.0 | 21 | 0.1230 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 8.0 | 24 | 0.0776 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 9.0 | 27 | 0.0543 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 10.0 | 30 | 0.0427 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 11.0 | 33 | 0.0378 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 12.0 | 36 | 0.0345 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 13.0 | 39 | 0.0323 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 14.0 | 42 | 0.0280 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 15.0 | 45 | 0.0228 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 16.0 | 48 | 0.0180 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 17.0 | 51 | 0.0141 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 18.0 | 54 | 0.0117 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 19.0 | 57 | 0.0104 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 20.0 | 60 | 0.0094 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 21.0 | 63 | 0.0086 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 22.0 | 66 | 0.0079 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 23.0 | 69 | 0.0074 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 24.0 | 72 | 0.0069 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 25.0 | 75 | 0.0063 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 26.0 | 78 | 0.0059 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 27.0 | 81 | 0.0056 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 28.0 | 84 | 0.0054 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 29.0 | 87 | 0.0053 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 30.0 | 90 | 0.0053 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2