nielsr HF Staff commited on
Commit
c0ec9aa
·
verified ·
1 Parent(s): e0a4bcc

Add pipeline_tag and library_name, remove duplicate base model entry, fix typo

Browse files

This PR adds the `pipeline_tag` (set to `text-generation`) and `library_name` (set to `vllm`) to the model card metadata. This PR also:
- fixes a typo
- adds a link to the paper to the model card
- removes a duplicated base model entry

Files changed (1) hide show
  1. README.md +8 -10
README.md CHANGED
@@ -1,22 +1,25 @@
1
  ---
2
- license: apache-2.0
3
  base_model:
4
  - Satori-reasoning/Satori-SWE-SFT-32B
 
 
 
 
 
 
5
  ---
6
 
7
  # Satori‑SWE‑RL‑32B
8
 
9
  ## Overview
10
 
11
- 🚀 **Satori-SWE-RL-32B** is trained specifically to resolve software engineering tasks efficiently, using our proposed [**EvoScale**](https://arxiv.org/pdf/2505.23604) test-time scaling technique, and a novel training framework: two-stage SFT and RL. The model can iteratively self-improve its own generation to progressively write a better patch.
12
-
13
 
14
  ## Training Data
15
 
16
  - **SFT Dataset**: [Satori SFT Dataset](https://huggingface.co/datasets/Satori-reasoning/Satori-SWE-two-stage-SFT-data)
17
  - **RL Dataset**: [Satori RL Dataset](https://huggingface.co/datasets/Satori-reasoning/Satori-SWE-RL-data)
18
 
19
-
20
  ## Resources
21
 
22
  🔗 **GitHub Repository**: [Satori-SWE](https://github.com/Satori-Reasoning/Satori-SWE)
@@ -25,7 +28,6 @@ base_model:
25
 
26
  🔗 **Research Paper**: [Paper](https://arxiv.org/abs/2505.23604)
27
 
28
-
29
  ## Prompt Template
30
  ````python
31
  classical_sft_prompt = """You are an expert software engineer and seasoned code reviewer, specializing in bug localization and code optimization within real-world code repositories. Your strengths lie in understanding complex codebase structures and precisely identifying and modifying the relevant parts of the code to resolve issues. You also excel at articulating your reasoning process in a coherent, step-by-step manner that leads to efficient and correct bug fixes.
@@ -249,8 +251,6 @@ Please provide your response below.
249
  """
250
  ````
251
 
252
-
253
-
254
  ## Usage: Toy Example
255
 
256
  ````python
@@ -445,8 +445,6 @@ for mutation_completion in mutation_completions:
445
 
446
  ````
447
 
448
-
449
-
450
  ## Citation
451
 
452
  If you find this model useful, please cite our paper:
@@ -461,4 +459,4 @@ If you find this model useful, please cite our paper:
461
  primaryClass={cs.CL},
462
  url={https://arxiv.org/abs/2505.23604},
463
  }
464
- ```
 
1
  ---
 
2
  base_model:
3
  - Satori-reasoning/Satori-SWE-SFT-32B
4
+ license: apache-2.0
5
+ pipeline_tag: text-generation
6
+ library_name: vllm
7
+ datasets:
8
+ - Satori-reasoning/Satori-SWE-two-stage-SFT-data
9
+ - Satori-reasoning/Satori-SWE-RL-data
10
  ---
11
 
12
  # Satori‑SWE‑RL‑32B
13
 
14
  ## Overview
15
 
16
+ 🚀 **Satori-SWE-RL-32B** is trained specifically to resolve software engineering tasks efficiently, using our proposed [**EvoScale**](https://arxiv.org/abs/2505.23604) test-time scaling technique, and a novel training framework: two-stage SFT and RL. The model can iteratively self-improve its own generation to progressively write a better patch.
 
17
 
18
  ## Training Data
19
 
20
  - **SFT Dataset**: [Satori SFT Dataset](https://huggingface.co/datasets/Satori-reasoning/Satori-SWE-two-stage-SFT-data)
21
  - **RL Dataset**: [Satori RL Dataset](https://huggingface.co/datasets/Satori-reasoning/Satori-SWE-RL-data)
22
 
 
23
  ## Resources
24
 
25
  🔗 **GitHub Repository**: [Satori-SWE](https://github.com/Satori-Reasoning/Satori-SWE)
 
28
 
29
  🔗 **Research Paper**: [Paper](https://arxiv.org/abs/2505.23604)
30
 
 
31
  ## Prompt Template
32
  ````python
33
  classical_sft_prompt = """You are an expert software engineer and seasoned code reviewer, specializing in bug localization and code optimization within real-world code repositories. Your strengths lie in understanding complex codebase structures and precisely identifying and modifying the relevant parts of the code to resolve issues. You also excel at articulating your reasoning process in a coherent, step-by-step manner that leads to efficient and correct bug fixes.
 
251
  """
252
  ````
253
 
 
 
254
  ## Usage: Toy Example
255
 
256
  ````python
 
445
 
446
  ````
447
 
 
 
448
  ## Citation
449
 
450
  If you find this model useful, please cite our paper:
 
459
  primaryClass={cs.CL},
460
  url={https://arxiv.org/abs/2505.23604},
461
  }
462
+ ```