SandeepKanao commited on
Commit
e6184c8
·
1 Parent(s): 79816d5

Upload 8 files

Browse files
README.md CHANGED
@@ -1,210 +1,48 @@
1
  ---
2
- license: osl-3.0
3
- datasets:
4
- - SandeepKanao/HL7-FHIR-Synthetic-Dataset
5
  language:
6
  - en
7
- metrics:
8
- - bertscore
9
- - accuracy
10
- - character
11
- library_name: bertopic
12
  tags:
13
- - medical
14
- pipeline_tag: text-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
- # Model Card for Model ID
17
 
18
- <!-- Provide a quick summary of what the model is/does. -->
 
19
 
20
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
 
 
 
21
 
22
- ## Model Details
23
 
24
- ### Model Description
 
 
 
 
25
 
26
- <!-- Provide a longer summary of what this model is. -->
27
-
28
-
29
-
30
- - **Developed by:** [More Information Needed]
31
- - **Shared by [optional]:** [More Information Needed]
32
- - **Model type:** [More Information Needed]
33
- - **Language(s) (NLP):** [More Information Needed]
34
- - **License:** [More Information Needed]
35
- - **Finetuned from model [optional]:** [More Information Needed]
36
-
37
- ### Model Sources [optional]
38
-
39
- <!-- Provide the basic links for the model. -->
40
-
41
- - **Repository:** [More Information Needed]
42
- - **Paper [optional]:** [More Information Needed]
43
- - **Demo [optional]:** [More Information Needed]
44
-
45
- ## Uses
46
-
47
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
48
-
49
- ### Direct Use
50
-
51
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
52
-
53
- [More Information Needed]
54
-
55
- ### Downstream Use [optional]
56
-
57
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
58
-
59
- [More Information Needed]
60
-
61
- ### Out-of-Scope Use
62
-
63
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
64
-
65
- [More Information Needed]
66
-
67
- ## Bias, Risks, and Limitations
68
-
69
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
70
-
71
- [More Information Needed]
72
-
73
- ### Recommendations
74
-
75
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
76
-
77
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
78
-
79
- ## How to Get Started with the Model
80
-
81
- Use the code below to get started with the model.
82
-
83
- [More Information Needed]
84
-
85
- ## Training Details
86
-
87
- ### Training Data
88
-
89
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
90
-
91
- [More Information Needed]
92
-
93
- ### Training Procedure
94
-
95
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
96
-
97
- #### Preprocessing [optional]
98
-
99
- [More Information Needed]
100
-
101
-
102
- #### Training Hyperparameters
103
-
104
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
105
-
106
- #### Speeds, Sizes, Times [optional]
107
-
108
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
109
-
110
- [More Information Needed]
111
-
112
- ## Evaluation
113
-
114
- <!-- This section describes the evaluation protocols and provides the results. -->
115
-
116
- ### Testing Data, Factors & Metrics
117
-
118
- #### Testing Data
119
-
120
- <!-- This should link to a Data Card if possible. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Factors
125
-
126
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
127
-
128
- [More Information Needed]
129
-
130
- #### Metrics
131
-
132
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
133
-
134
- [More Information Needed]
135
-
136
- ### Results
137
-
138
- [More Information Needed]
139
-
140
- #### Summary
141
-
142
-
143
-
144
- ## Model Examination [optional]
145
-
146
- <!-- Relevant interpretability work for the model goes here -->
147
-
148
- [More Information Needed]
149
-
150
- ## Environmental Impact
151
-
152
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
153
-
154
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
155
-
156
- - **Hardware Type:** [More Information Needed]
157
- - **Hours used:** [More Information Needed]
158
- - **Cloud Provider:** [More Information Needed]
159
- - **Compute Region:** [More Information Needed]
160
- - **Carbon Emitted:** [More Information Needed]
161
-
162
- ## Technical Specifications [optional]
163
-
164
- ### Model Architecture and Objective
165
-
166
- [More Information Needed]
167
-
168
- ### Compute Infrastructure
169
-
170
- [More Information Needed]
171
-
172
- #### Hardware
173
-
174
- [More Information Needed]
175
-
176
- #### Software
177
-
178
- [More Information Needed]
179
-
180
- ## Citation [optional]
181
-
182
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
183
-
184
- **BibTeX:**
185
-
186
- [More Information Needed]
187
-
188
- **APA:**
189
-
190
- [More Information Needed]
191
-
192
- ## Glossary [optional]
193
-
194
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
195
-
196
- [More Information Needed]
197
-
198
- ## More Information [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Authors [optional]
203
-
204
- [More Information Needed]
205
-
206
- ## Model Card Contact
207
-
208
- [More Information Needed]
209
 
 
 
 
210
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
 
 
3
  language:
4
  - en
 
 
 
 
 
5
  tags:
6
+ - Token Classification
7
+ co2_eq_emissions: 0.0279399890043426
8
+ widget:
9
+ - text: "CASE: A 28-year-old previously healthy man presented with a 6-week history of palpitations.
10
+ The symptoms occurred during rest, 2–3 times per week, lasted up to 30 minutes at a time and were associated with dyspnea.
11
+ Except for a grade 2/6 holosystolic tricuspid regurgitation murmur (best heard at the left sternal border with inspiratory accentuation), physical examination yielded unremarkable findings."
12
+ example_title: "example 1"
13
+ - text: "A 63-year-old woman with no known cardiac history presented with a sudden onset of dyspnea requiring intubation and ventilatory support out of hospital.
14
+ She denied preceding symptoms of chest discomfort, palpitations, syncope or infection.
15
+ The patient was afebrile and normotensive, with a sinus tachycardia of 140 beats/min."
16
+ example_title: "example 2"
17
+ - text: "A 48 year-old female presented with vaginal bleeding and abnormal Pap smears.
18
+ Upon diagnosis of invasive non-keratinizing SCC of the cervix, she underwent a radical hysterectomy with salpingo-oophorectomy which demonstrated positive spread to the pelvic lymph nodes and the parametrium.
19
+ Pathological examination revealed that the tumour also extensively involved the lower uterine segment."
20
+ example_title: "example 3"
21
  ---
 
22
 
23
+ ## About the Model
24
+ An English Named Entity Recognition model, trained on Maccrobat to recognize the bio-medical entities (107 entities) from a given text corpus (case reports etc.). This model was built on top of distilbert-base-uncased
25
 
26
+ - Dataset: Maccrobat https://figshare.com/articles/dataset/MACCROBAT2018/9764942
27
+ - Carbon emission: 0.0279399890043426 Kg
28
+ - Training time: 30.16527 minutes
29
+ - GPU used : 1 x GeForce RTX 3060 Laptop GPU
30
 
31
+ Checkout the tutorial video for explanation of this model and corresponding python library: https://youtu.be/xpiDPdBpS18
32
 
33
+ ## Usage
34
+ The easiest way is to load the inference api from huggingface and second method is through the pipeline object offered by transformers library.
35
+ ```python
36
+ from transformers import pipeline
37
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
38
 
39
+ tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
40
+ model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
43
+ pipe("""The patient reported no recurrence of palpitations at follow-up 6 months after the ablation.""")
44
+ ```
45
 
46
+ ## Author
47
+ This model is part of the Research topic "AI in Biomedical field" conducted by Deepak John Reji, Shaina Raza. If you use this work (code, model or dataset), please star at:
48
+ > https://github.com/dreji18/Bio-Epidemiology-NER
config.json ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForTokenClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "O",
13
+ "1": "B-Activity",
14
+ "2": "B-Administration",
15
+ "3": "B-Age",
16
+ "4": "B-Area",
17
+ "5": "B-Biological_attribute",
18
+ "6": "B-Biological_structure",
19
+ "7": "B-Clinical_event",
20
+ "8": "B-Color",
21
+ "9": "B-Coreference",
22
+ "10": "B-Date",
23
+ "11": "B-Detailed_description",
24
+ "12": "B-Diagnostic_procedure",
25
+ "13": "B-Disease_disorder",
26
+ "14": "B-Distance",
27
+ "15": "B-Dosage",
28
+ "16": "B-Duration",
29
+ "17": "B-Family_history",
30
+ "18": "B-Frequency",
31
+ "19": "B-Height",
32
+ "20": "B-History",
33
+ "21": "B-Lab_value",
34
+ "22": "B-Mass",
35
+ "23": "B-Medication",
36
+ "24": "B-Non[biological](Detailed_description",
37
+ "25": "B-Nonbiological_location",
38
+ "26": "B-Occupation",
39
+ "27": "B-Other_entity",
40
+ "28": "B-Other_event",
41
+ "29": "B-Outcome",
42
+ "30": "B-Personal_[back](Biological_structure",
43
+ "31": "B-Personal_background",
44
+ "32": "B-Qualitative_concept",
45
+ "33": "B-Quantitative_concept",
46
+ "34": "B-Severity",
47
+ "35": "B-Sex",
48
+ "36": "B-Shape",
49
+ "37": "B-Sign_symptom",
50
+ "38": "B-Subject",
51
+ "39": "B-Texture",
52
+ "40": "B-Therapeutic_procedure",
53
+ "41": "B-Time",
54
+ "42": "B-Volume",
55
+ "43": "B-Weight",
56
+ "44": "I-Activity",
57
+ "45": "I-Administration",
58
+ "46": "I-Age",
59
+ "47": "I-Area",
60
+ "48": "I-Biological_attribute",
61
+ "49": "I-Biological_structure",
62
+ "50": "I-Clinical_event",
63
+ "51": "I-Color",
64
+ "52": "I-Coreference",
65
+ "53": "I-Date",
66
+ "54": "I-Detailed_description",
67
+ "55": "I-Diagnostic_procedure",
68
+ "56": "I-Disease_disorder",
69
+ "57": "I-Distance",
70
+ "58": "I-Dosage",
71
+ "59": "I-Duration",
72
+ "60": "I-Family_history",
73
+ "61": "I-Frequency",
74
+ "62": "I-Height",
75
+ "63": "I-History",
76
+ "64": "I-Lab_value",
77
+ "65": "I-Mass",
78
+ "66": "I-Medication",
79
+ "67": "I-Nonbiological_location",
80
+ "68": "I-Occupation",
81
+ "69": "I-Other_entity",
82
+ "70": "I-Other_event",
83
+ "71": "I-Outcome",
84
+ "72": "I-Personal_background",
85
+ "73": "I-Qualitative_concept",
86
+ "74": "I-Quantitative_concept",
87
+ "75": "I-Severity",
88
+ "76": "I-Shape",
89
+ "77": "I-Sign_symptom",
90
+ "78": "I-Subject",
91
+ "79": "I-Texture",
92
+ "80": "I-Therapeutic_procedure",
93
+ "81": "I-Time",
94
+ "82": "I-Volume",
95
+ "83": "I-Weight"
96
+ },
97
+ "initializer_range": 0.02,
98
+ "label2id": {
99
+ "B-Activity": 1,
100
+ "B-Administration": 2,
101
+ "B-Age": 3,
102
+ "B-Area": 4,
103
+ "B-Biological_attribute": 5,
104
+ "B-Biological_structure": 6,
105
+ "B-Clinical_event": 7,
106
+ "B-Color": 8,
107
+ "B-Coreference": 9,
108
+ "B-Date": 10,
109
+ "B-Detailed_description": 11,
110
+ "B-Diagnostic_procedure": 12,
111
+ "B-Disease_disorder": 13,
112
+ "B-Distance": 14,
113
+ "B-Dosage": 15,
114
+ "B-Duration": 16,
115
+ "B-Family_history": 17,
116
+ "B-Frequency": 18,
117
+ "B-Height": 19,
118
+ "B-History": 20,
119
+ "B-Lab_value": 21,
120
+ "B-Mass": 22,
121
+ "B-Medication": 23,
122
+ "B-Non[biological](Detailed_description": 24,
123
+ "B-Nonbiological_location": 25,
124
+ "B-Occupation": 26,
125
+ "B-Other_entity": 27,
126
+ "B-Other_event": 28,
127
+ "B-Outcome": 29,
128
+ "B-Personal_[back](Biological_structure": 30,
129
+ "B-Personal_background": 31,
130
+ "B-Qualitative_concept": 32,
131
+ "B-Quantitative_concept": 33,
132
+ "B-Severity": 34,
133
+ "B-Sex": 35,
134
+ "B-Shape": 36,
135
+ "B-Sign_symptom": 37,
136
+ "B-Subject": 38,
137
+ "B-Texture": 39,
138
+ "B-Therapeutic_procedure": 40,
139
+ "B-Time": 41,
140
+ "B-Volume": 42,
141
+ "B-Weight": 43,
142
+ "I-Activity": 44,
143
+ "I-Administration": 45,
144
+ "I-Age": 46,
145
+ "I-Area": 47,
146
+ "I-Biological_attribute": 48,
147
+ "I-Biological_structure": 49,
148
+ "I-Clinical_event": 50,
149
+ "I-Color": 51,
150
+ "I-Coreference": 52,
151
+ "I-Date": 53,
152
+ "I-Detailed_description": 54,
153
+ "I-Diagnostic_procedure": 55,
154
+ "I-Disease_disorder": 56,
155
+ "I-Distance": 57,
156
+ "I-Dosage": 58,
157
+ "I-Duration": 59,
158
+ "I-Family_history": 60,
159
+ "I-Frequency": 61,
160
+ "I-Height": 62,
161
+ "I-History": 63,
162
+ "I-Lab_value": 64,
163
+ "I-Mass": 65,
164
+ "I-Medication": 66,
165
+ "I-Nonbiological_location": 67,
166
+ "I-Occupation": 68,
167
+ "I-Other_entity": 69,
168
+ "I-Other_event": 70,
169
+ "I-Outcome": 71,
170
+ "I-Personal_background": 72,
171
+ "I-Qualitative_concept": 73,
172
+ "I-Quantitative_concept": 74,
173
+ "I-Severity": 75,
174
+ "I-Shape": 76,
175
+ "I-Sign_symptom": 77,
176
+ "I-Subject": 78,
177
+ "I-Texture": 79,
178
+ "I-Therapeutic_procedure": 80,
179
+ "I-Time": 81,
180
+ "I-Volume": 82,
181
+ "I-Weight": 83,
182
+ "O": 0
183
+ },
184
+ "max_position_embeddings": 512,
185
+ "model_type": "distilbert",
186
+ "n_heads": 12,
187
+ "n_layers": 6,
188
+ "pad_token_id": 0,
189
+ "qa_dropout": 0.1,
190
+ "seq_classif_dropout": 0.2,
191
+ "sinusoidal_pos_embds": false,
192
+ "tie_weights_": true,
193
+ "torch_dtype": "float32",
194
+ "transformers_version": "4.20.1",
195
+ "vocab_size": 30522
196
+ }
gitattributes.txt ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b027673a3307002bc2c34795e627691e1a0b906ee3480036fb9a5b06d269f547
3
+ size 265743541
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "cuda": 0,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "distilbert-base-uncased",
8
+ "pad_token": "[PAD]",
9
+ "sep_token": "[SEP]",
10
+ "special_tokens_map_file": null,
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "DistilBertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff