nielsr HF staff commited on
Commit
6c3090a
·
verified ·
1 Parent(s): 4c23649

Add ActionStudio paper and library_name

Browse files

This PR ensures the model card mentions the ActionStudio paper and adds `library_name: transformers` to the model card. This will make the "how to use" button available on the top right, making it
easier to use this model for other people.

Files changed (1) hide show
  1. README.md +37 -15
README.md CHANGED
@@ -1,27 +1,27 @@
1
  ---
2
- extra_gated_heading: >-
3
- Acknowledge to follow corresponding license to access the
4
- repository
5
- extra_gated_button_content: Agree and access repository
6
- extra_gated_fields:
7
- First Name: text
8
- Last Name: text
9
- Country: country
10
- Affiliation: text
11
- license: cc-by-nc-4.0
12
  datasets:
13
  - Salesforce/xlam-function-calling-60k
14
  language:
15
  - en
 
16
  pipeline_tag: text-generation
 
17
  tags:
18
  - function-calling
19
  - LLM Agent
20
  - tool-use
21
  - mistral
22
  - pytorch
 
 
 
 
 
 
 
23
  ---
24
 
 
25
  <p align="center">
26
  <img width="500px" alt="xLAM" src="https://huggingface.co/datasets/jianguozhang/logos/resolve/main/xlam-no-background.png">
27
  </p>
@@ -35,6 +35,7 @@ tags:
35
  </p>
36
  <hr>
37
 
 
38
 
39
  Welcome to the xLAM model family! [Large Action Models (LAMs)](https://blog.salesforceairesearch.com/large-action-models/) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.
40
  **The model release is exclusively for research purposes. A new and enhanced version of xLAM will soon be available exclusively to customers on our Platform.**
@@ -193,15 +194,35 @@ def build_conversation_history_prompt(conversation_history: str):
193
  })
194
 
195
  history_string = json.dumps(parsed_history)
196
- return f"\n[BEGIN OF HISTORY STEPS]\n{history_string}\n[END OF HISTORY STEPS]\n"
 
 
 
 
197
 
198
 
199
  # Helper function to build the input prompt for our model
200
  def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):
201
- prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
202
- prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(xlam_format_tools)}\n[END OF AVAILABLE TOOLS]\n\n"
203
- prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
204
- prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205
 
206
  if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)
207
  return prompt
@@ -482,4 +503,5 @@ If you find this repo helpful, please consider to cite our papers:
482
  journal={arXiv preprint arXiv:2402.15506},
483
  year={2024}
484
  }
 
485
  ```
 
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  datasets:
3
  - Salesforce/xlam-function-calling-60k
4
  language:
5
  - en
6
+ license: cc-by-nc-4.0
7
  pipeline_tag: text-generation
8
+ library_name: transformers
9
  tags:
10
  - function-calling
11
  - LLM Agent
12
  - tool-use
13
  - mistral
14
  - pytorch
15
+ extra_gated_heading: Acknowledge to follow corresponding license to access the repository
16
+ extra_gated_button_content: Agree and access repository
17
+ extra_gated_fields:
18
+ First Name: text
19
+ Last Name: text
20
+ Country: country
21
+ Affiliation: text
22
  ---
23
 
24
+ ```markdown
25
  <p align="center">
26
  <img width="500px" alt="xLAM" src="https://huggingface.co/datasets/jianguozhang/logos/resolve/main/xlam-no-background.png">
27
  </p>
 
35
  </p>
36
  <hr>
37
 
38
+ This model was built using the framework described in the paper [ActionStudio: A Lightweight Framework for Data and Training of Action Models](https://huggingface.co/papers/2503.22673).
39
 
40
  Welcome to the xLAM model family! [Large Action Models (LAMs)](https://blog.salesforceairesearch.com/large-action-models/) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.
41
  **The model release is exclusively for research purposes. A new and enhanced version of xLAM will soon be available exclusively to customers on our Platform.**
 
194
  })
195
 
196
  history_string = json.dumps(parsed_history)
197
+ return f"
198
+ [BEGIN OF HISTORY STEPS]
199
+ {history_string}
200
+ [END OF HISTORY STEPS]
201
+ "
202
 
203
 
204
  # Helper function to build the input prompt for our model
205
  def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):
206
+ prompt = f"[BEGIN OF TASK INSTRUCTION]
207
+ {task_instruction}
208
+ [END OF TASK INSTRUCTION]
209
+
210
+ "
211
+ prompt += f"[BEGIN OF AVAILABLE TOOLS]
212
+ {json.dumps(xlam_format_tools)}
213
+ [END OF AVAILABLE TOOLS]
214
+
215
+ "
216
+ prompt += f"[BEGIN OF FORMAT INSTRUCTION]
217
+ {format_instruction}
218
+ [END OF FORMAT INSTRUCTION]
219
+
220
+ "
221
+ prompt += f"[BEGIN OF QUERY]
222
+ {query}
223
+ [END OF QUERY]
224
+
225
+ "
226
 
227
  if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)
228
  return prompt
 
503
  journal={arXiv preprint arXiv:2402.15506},
504
  year={2024}
505
  }
506
+ ```
507
  ```