nielsr HF staff commited on
Commit
8670e8f
·
verified ·
1 Parent(s): 03b3003

Update model card with ActionStudio paper link, library_name, and updated citation

Browse files

This PR updates the model card to:
- Link to the ActionStudio paper
- Add the library_name to the metadata
- Update the citation to the ActionStudio paper

Files changed (1) hide show
  1. README.md +41 -23
README.md CHANGED
@@ -1,25 +1,24 @@
1
  ---
2
- extra_gated_heading: >-
3
- Acknowledge to follow corresponding license to access the
4
- repository
5
- extra_gated_button_content: Agree and access repository
6
- extra_gated_fields:
7
- First Name: text
8
- Last Name: text
9
- Country: country
10
- Affiliation: text
11
- license: cc-by-nc-4.0
12
  datasets:
13
  - Salesforce/xlam-function-calling-60k
14
  language:
15
  - en
 
16
  pipeline_tag: text-generation
 
17
  tags:
18
  - function-calling
19
  - LLM Agent
20
  - tool-use
21
  - deepseek
22
  - pytorch
 
 
 
 
 
 
 
23
  ---
24
 
25
  <p align="center">
@@ -27,7 +26,8 @@ tags:
27
  </p>
28
  <p align="center">
29
  <a href="https://apigen-pipeline.github.io/">[Homepage]</a> |
30
- <a href="https://arxiv.org/abs/2406.18518">[Paper]</a> |
 
31
  <a href="https://discord.gg/tysWwgZyQ2">[Discord]</a> |
32
  <a href="https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k">[Dataset]</a> |
33
  <a href="https://github.com/SalesforceAIResearch/xLAM">[Github]</a>
@@ -59,8 +59,6 @@ We provide a series of xLAMs in different sizes to cater to various applications
59
  | xLAM-7b-fc-r | 6.91B | 4k | July 17, 2024| Function-calling| [🤗 Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r) | [🤗 Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r-gguf) |
60
  | xLAM-v0.1-r | 46.7B | 32k | Mar. 18, 2024 |General, Function-calling | [🤗 Link](https://huggingface.co/Salesforce/xLAM-v0.1-r) | -- |
61
 
62
-
63
-
64
  The `fc` series of models are optimized for function-calling capability, providing fast, accurate, and structured responses based on input queries and available APIs. These models are fine-tuned based on the [deepseek-coder](https://huggingface.co/collections/deepseek-ai/deepseek-coder-65f295d7d8a0a29fe39b4ec4) models and are designed to be small enough for deployment on personal devices like phones or computers.
65
 
66
  We also provide their quantized [GGUF](https://huggingface.co/docs/hub/en/gguf) files for efficient deployment and execution. GGUF is a file format designed to efficiently store and load large language models, making GGUF ideal for running AI models on local devices with limited resources, enabling offline functionality and enhanced privacy.
@@ -205,10 +203,26 @@ def convert_to_xlam_tool(tools):
205
 
206
  # Helper function to build the input prompt for our model
207
  def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str):
208
- prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
209
- prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(xlam_format_tools)}\n[END OF AVAILABLE TOOLS]\n\n"
210
- prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
211
- prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
  return prompt
213
 
214
  # Build the input and start the inference
@@ -304,11 +318,15 @@ This release is for research purposes only in support of an academic paper. Our
304
  ## Citation
305
 
306
  If you find this repo helpful, please cite our paper:
 
307
  ```bibtex
308
- @article{liu2024apigen,
309
- title={APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets},
310
- author={Liu, Zuxin and Hoang, Thai and Zhang, Jianguo and Zhu, Ming and Lan, Tian and Kokane, Shirley and Tan, Juntao and Yao, Weiran and Liu, Zhiwei and Feng, Yihao and others},
311
- journal={arXiv preprint arXiv:2406.18518},
312
- year={2024}
 
 
 
313
  }
314
- ```
 
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  datasets:
3
  - Salesforce/xlam-function-calling-60k
4
  language:
5
  - en
6
+ license: cc-by-nc-4.0
7
  pipeline_tag: text-generation
8
+ library_name: transformers
9
  tags:
10
  - function-calling
11
  - LLM Agent
12
  - tool-use
13
  - deepseek
14
  - pytorch
15
+ extra_gated_heading: Acknowledge to follow corresponding license to access the repository
16
+ extra_gated_button_content: Agree and access repository
17
+ extra_gated_fields:
18
+ First Name: text
19
+ Last Name: text
20
+ Country: country
21
+ Affiliation: text
22
  ---
23
 
24
  <p align="center">
 
26
  </p>
27
  <p align="center">
28
  <a href="https://apigen-pipeline.github.io/">[Homepage]</a> |
29
+ <a href="https://arxiv.org/abs/2406.18518">[APIGen Paper]</a> |
30
+ <a href="https://huggingface.co/papers/2503.22673">[ActionStudio Paper]</a> |
31
  <a href="https://discord.gg/tysWwgZyQ2">[Discord]</a> |
32
  <a href="https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k">[Dataset]</a> |
33
  <a href="https://github.com/SalesforceAIResearch/xLAM">[Github]</a>
 
59
  | xLAM-7b-fc-r | 6.91B | 4k | July 17, 2024| Function-calling| [🤗 Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r) | [🤗 Link](https://huggingface.co/Salesforce/xLAM-7b-fc-r-gguf) |
60
  | xLAM-v0.1-r | 46.7B | 32k | Mar. 18, 2024 |General, Function-calling | [🤗 Link](https://huggingface.co/Salesforce/xLAM-v0.1-r) | -- |
61
 
 
 
62
  The `fc` series of models are optimized for function-calling capability, providing fast, accurate, and structured responses based on input queries and available APIs. These models are fine-tuned based on the [deepseek-coder](https://huggingface.co/collections/deepseek-ai/deepseek-coder-65f295d7d8a0a29fe39b4ec4) models and are designed to be small enough for deployment on personal devices like phones or computers.
63
 
64
  We also provide their quantized [GGUF](https://huggingface.co/docs/hub/en/gguf) files for efficient deployment and execution. GGUF is a file format designed to efficiently store and load large language models, making GGUF ideal for running AI models on local devices with limited resources, enabling offline functionality and enhanced privacy.
 
203
 
204
  # Helper function to build the input prompt for our model
205
  def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str):
206
+ prompt = f"[BEGIN OF TASK INSTRUCTION]
207
+ {task_instruction}
208
+ [END OF TASK INSTRUCTION]
209
+
210
+ "
211
+ prompt += f"[BEGIN OF AVAILABLE TOOLS]
212
+ {json.dumps(xlam_format_tools)}
213
+ [END OF AVAILABLE TOOLS]
214
+
215
+ "
216
+ prompt += f"[BEGIN OF FORMAT INSTRUCTION]
217
+ {format_instruction}
218
+ [END OF FORMAT INSTRUCTION]
219
+
220
+ "
221
+ prompt += f"[BEGIN OF QUERY]
222
+ {query}
223
+ [END OF QUERY]
224
+
225
+ "
226
  return prompt
227
 
228
  # Build the input and start the inference
 
318
  ## Citation
319
 
320
  If you find this repo helpful, please cite our paper:
321
+
322
  ```bibtex
323
+ @misc{tan2025actionstudio,
324
+ title={ActionStudio: A Lightweight Framework for Data and Training of Action Models},
325
+ author={Zhenxiong Tan and Jianguo Zhang and Tian Lan and Thai Hoang and Linh Tran and Ming Zhu and Shervin Raissi and Caiming Xiong},
326
+ year={2025},\
327
+ eprint={2503.22673},\
328
+ archivePrefix={arXiv},\
329
+ primaryClass={cs.LG},\
330
+ url={https://arxiv.org/abs/2503.22673}\
331
  }
332
+ ```