Taha Aksu commited on
Commit
5e57b91
·
1 Parent(s): c1b8789

Update readme

Browse files
Files changed (1) hide show
  1. README.md +2 -12
README.md CHANGED
@@ -12,7 +12,7 @@ tags:
12
 
13
  # Moirai-2.0-R-Small
14
 
15
- Moirai 2.0 is a decoder-only universal time series forecasting transformer Model pre-trained on:
16
  - Subset of [GIFT-Eval Pretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain), and [Train](https://huggingface.co/datasets/Salesforce/GiftEval) datasets (Non-leaking historical context).
17
  - Mixup data generated from non-leaking subsets of [Chronos Dataset](https://arxiv.org/abs/2403.07815).
18
  - Synthetic time series produced via KernelSynth introduced in [Chronos paper](https://arxiv.org/abs/2403.07815).
@@ -52,19 +52,9 @@ touch .env
52
 
53
  A simple notebook to get started: [github_notebook_link](https://github.com/SalesforceAIResearch/uni2ts/blob/main/example/moirai_forecast.ipynb)
54
 
55
-
56
- ## The Moirai Family
57
-
58
- | # Model | # Parameters |
59
- | :---: | :---: |
60
- | [Moirai-2.0-R-Small](https://huggingface.co/Salesforce/moirai-1.0-R-small) | 11m |
61
- | [Moirai-1.0-R-Small](https://huggingface.co/Salesforce/moirai-1.0-R-small) | 14m |
62
- | [Moirai-1.0-R-Base](https://huggingface.co/Salesforce/moirai-1.0-R-base) | 91m |
63
- | [Moirai-1.0-R-Large](https://huggingface.co/Salesforce/moirai-1.0-R-large) | 311m |
64
-
65
  ## Citation
66
 
67
- If you're using Uni2TS in your research or applications, please cite it using this BibTeX:
68
 
69
  ```markdown
70
  @article{woo2024unified,
 
12
 
13
  # Moirai-2.0-R-Small
14
 
15
+ Moirai 2.0 is a decoder-only universal time series forecasting transformer model pre-trained on:
16
  - Subset of [GIFT-Eval Pretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain), and [Train](https://huggingface.co/datasets/Salesforce/GiftEval) datasets (Non-leaking historical context).
17
  - Mixup data generated from non-leaking subsets of [Chronos Dataset](https://arxiv.org/abs/2403.07815).
18
  - Synthetic time series produced via KernelSynth introduced in [Chronos paper](https://arxiv.org/abs/2403.07815).
 
52
 
53
  A simple notebook to get started: [github_notebook_link](https://github.com/SalesforceAIResearch/uni2ts/blob/main/example/moirai_forecast.ipynb)
54
 
 
 
 
 
 
 
 
 
 
 
55
  ## Citation
56
 
57
+ If you're using any Moirai model or Uni2TS in your research or applications, please cite it using this BibTeX:
58
 
59
  ```markdown
60
  @article{woo2024unified,