File size: 12,289 Bytes
a949a72 e717e47 a949a72 c7a90a1 e717e47 a949a72 e717e47 a949a72 f23df61 a949a72 e717e47 a949a72 c7a90a1 a949a72 e717e47 a949a72 e717e47 a949a72 e717e47 a949a72 e717e47 a949a72 c7a90a1 a949a72 f23df61 a949a72 e717e47 a949a72 e717e47 a949a72 e717e47 a949a72 e717e47 a949a72 e717e47 a949a72 c7a90a1 a949a72 e717e47 a949a72 e717e47 a949a72 e717e47 a949a72 c7a90a1 a949a72 c7a90a1 e717e47 a949a72 c7a90a1 e717e47 a949a72 c7a90a1 e717e47 c7a90a1 a949a72 e717e47 f23df61 e717e47 f23df61 e717e47 f23df61 e717e47 f23df61 e717e47 f23df61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import json
import os
from typing import List, Optional, Union, Dict, Any, Tuple
from transformers import PreTrainedTokenizerFast
from transformers.tokenization_utils_base import AddedToken
from transformers.utils import logging
logger = logging.get_logger(__name__)
class TessarTokenizer(PreTrainedTokenizerFast):
"""
Tessar Tokenizer implementation for Hugging Face Transformers
This custom tokenizer extends the PreTrainedTokenizerFast with specialized
configuration and tokenization methods for the Tessar model.
"""
model_input_names = ['input_ids', 'attention_mask']
vocab_files_names = {"vocab_file": "vocab.json", "tokenizer_file": "tokenizer.json"}
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="<unk>",
sep_token="</s>",
pad_token="<pad>",
cls_token="<s>",
mask_token="<mask>",
bos_token="<s>",
eos_token="</s>",
max_cell_length=15,
**kwargs
):
"""
Initialize the Tessar Tokenizer with specific token configurations
Args:
vocab_file (str, optional): Path to the vocabulary file
tokenizer_file (str, optional): Path to the pre-trained tokenizer file
do_lower_case (bool, optional): Whether to lowercase the input. Defaults to True.
max_cell_length (int, optional): Maximum length for cell tokenization. Defaults to 15.
"""
# Prepare special tokens
special_tokens_dict = {
"unk_token": unk_token,
"sep_token": sep_token,
"pad_token": pad_token,
"cls_token": cls_token,
"mask_token": mask_token,
"bos_token": bos_token,
"eos_token": eos_token,
}
# Convert string tokens to AddedToken objects if they're not already
for token_name, token_value in special_tokens_dict.items():
if isinstance(token_value, str):
special_tokens_dict[token_name] = AddedToken(token_value,
lstrip=False,
rstrip=False,
normalized=True,
special=True)
# Call parent constructor
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
**special_tokens_dict,
**kwargs
)
# Custom Tessar-specific attributes
self.do_lower_case = do_lower_case
self.max_cell_length = max_cell_length
@property
def vocab_size(self) -> int:
"""
Return the size of vocabulary
Returns:
int: The vocabulary size
"""
return len(self.vocab)
def get_vocab(self) -> Dict[str, int]:
"""
Return the vocabulary mapping
Returns:
Dict[str, int]: The vocabulary mapping
"""
return dict(self.vocab)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, ...]:
"""
Save the tokenizer vocabulary and special tokens file
Args:
save_directory (str): Directory to save the vocabulary
filename_prefix (str, optional): Prefix for the saved files
Returns:
tuple: Paths to the saved files
"""
# Ensure the save directory exists
os.makedirs(save_directory, exist_ok=True)
# Prepare file paths
vocab_file = os.path.join(
save_directory,
f"{filename_prefix + '-' if filename_prefix else ''}vocab.json"
)
# Save tokenizer file
tokenizer_file = os.path.join(
save_directory,
f"{filename_prefix + '-' if filename_prefix else ''}tokenizer.json"
)
# Save special tokens configuration
special_tokens_file = os.path.join(
save_directory,
f"{filename_prefix + '-' if filename_prefix else ''}special_tokens.json"
)
# Get vocabulary from tokenizer
vocab_dict = self.get_vocab()
# Save vocabulary
with open(vocab_file, 'w', encoding='utf-8') as f:
json.dump(vocab_dict, f, ensure_ascii=False, indent=2)
# Save the tokenizer file if it exists
if hasattr(self, "backend_tokenizer") and hasattr(self.backend_tokenizer, "save"):
self.backend_tokenizer.save(tokenizer_file)
# Save special tokens configuration
special_tokens_config = {
"unk_token": self.unk_token,
"sep_token": self.sep_token,
"pad_token": self.pad_token,
"cls_token": self.cls_token,
"mask_token": self.mask_token,
"bos_token": self.bos_token,
"eos_token": self.eos_token,
"do_lower_case": self.do_lower_case,
"max_cell_length": self.max_cell_length
}
# Convert token objects to strings for JSON serialization
for key, token in special_tokens_config.items():
if hasattr(token, "content"):
special_tokens_config[key] = token.content
with open(special_tokens_file, 'w', encoding='utf-8') as f:
json.dump(special_tokens_config, f, ensure_ascii=False, indent=2)
return (vocab_file, tokenizer_file, special_tokens_file)
def _tokenize(self, text: str) -> List[str]:
"""
Custom tokenization method
Args:
text (str): Input text to tokenize
Returns:
List[str]: List of tokens
"""
# Apply lowercase if required
if self.do_lower_case:
text = text.lower()
# Use the parent tokenizer's tokenization method
tokens = super()._tokenize(text)
# Optional: Add custom cell-length truncation
if self.max_cell_length > 0:
tokens = tokens[:self.max_cell_length]
return tokens
def prepare_for_model(
self,
ids: List[int],
pair_ids: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str] = False,
truncation: Union[bool, str] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> Dict[str, Any]:
"""
Prepare tokenized inputs for the model
Args:
ids (List[int]): List of input token ids
pair_ids (Optional[List[int]], optional): List of pair token ids
Returns:
dict: Prepared model inputs
"""
# Implement any Tessar-specific model preparation logic
# For example, you might want to handle table data differently
return super().prepare_for_model(
ids,
pair_ids=pair_ids,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs
)
def batch_encode_tables(
self,
tables: List[List[List[str]]],
max_length: Optional[int] = None,
padding: Union[bool, str] = True,
truncation: Union[bool, str] = True,
return_tensors: Optional[str] = "pt",
**kwargs
) -> Dict[str, Any]:
"""
Encode a batch of tables for table question answering
Args:
tables (List[List[List[str]]]): List of tables, where each table is a list of rows,
and each row is a list of cell values
max_length (Optional[int], optional): Maximum sequence length
padding (Union[bool, str], optional): Padding strategy
truncation (Union[bool, str], optional): Truncation strategy
return_tensors (Optional[str], optional): Type of tensors to return
Returns:
Dict[str, Any]: Encoded table batch
"""
# Flatten tables into text sequences with appropriate format
flattened_inputs = []
for table in tables:
# Convert table to a flattened text representation
# This is a simplified example - real implementation would depend on your specific format
table_text = ""
for row_idx, row in enumerate(table):
for col_idx, cell in enumerate(row):
# Apply cell-level processing
if self.do_lower_case:
cell = cell.lower()
# Add cell with position information
table_text += f"[CELL_{row_idx}_{col_idx}] {cell} "
# Add row separator
table_text += "[ROW_END] "
flattened_inputs.append(table_text.strip())
# Encode the flattened text inputs
return self(
flattened_inputs,
max_length=max_length,
padding=padding,
truncation=truncation,
return_tensors=return_tensors,
**kwargs
)
def load_tessar_tokenizer(pretrained_model_name_or_path: str, **kwargs):
"""
Load a pretrained Tessar tokenizer
Args:
pretrained_model_name_or_path (str): Path to the pretrained model
**kwargs: Additional arguments to pass to from_pretrained
Returns:
TessarTokenizer: Initialized tokenizer
"""
return TessarTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
# Register the tokenizer with the Transformers library
from transformers import AutoTokenizer
AutoTokenizer.register("SVECTOR-CORPORATION/Tessar-largest", TessarTokenizer)
# Example usage
if __name__ == "__main__":
# Example of loading a pretrained tokenizer
try:
# Method 1: Direct loading with the class
tokenizer = load_tessar_tokenizer("SVECTOR-CORPORATION/Tessar-largest")
print("Tokenizer loaded successfully!")
# Method 2: Loading through AutoTokenizer
# This will work after the registration above
auto_tokenizer = AutoTokenizer.from_pretrained("SVECTOR-CORPORATION/Tessar-largest")
print("AutoTokenizer loaded successfully!")
# Basic tokenization example
text = "Hello, how are you doing today?"
encoded = tokenizer(text, return_tensors="pt")
print("Encoded Input:", encoded)
# Example with table data
table = [
["Header1", "Header2", "Header3"],
["Value1", "Value2", "Value3"],
["Value4", "Value5", "Value6"]
]
# Example of batch encoding tables
encoded_table = tokenizer.batch_encode_tables([table], return_tensors="pt")
print("Encoded Table:", encoded_table)
except Exception as e:
print(f"Error loading tokenizer: {e}") |