--- license: apache-2.0 library_name: transformers tags: - multilingual - India - Hindi - Gujarati - English - SVECTOR language: - en - gu - hi - mr - kn - pa - te - ta pipeline_tag: text-generation --- # 🚀 Introducing Akshara-8B: AI for India 🇮🇳✨ We’re proud to unveil **Akshara-8B**, our cutting-edge **AI fleet** built exclusively for India’s diverse linguistic landscape. Akshara is designed to **seamlessly understand and generate text** in multiple Indian languages, making AI more accessible, powerful, and tailored to our nation’s needs. ## 🌍 **What is Akshara?** Akshara-8B is a **highly optimized distilled version** of SVECTOR’s flagship large-scale AI model (Akshara). While it retains the core intelligence and multilingual capabilities of its parent model, Akshara-8B is specifically designed for **efficiency, speed, and accessibility**. It leverages advanced distillation techniques to provide powerful AI performance while being lightweight and scalable. Akshara-8B embodies **SVECTOR’s commitment to bringing cutting-edge AI to India**, ensuring robust support for **India’s diverse languages and applications.** 🚀 Akshara can fluently understand and generate content in: ✅ **Hindi** ✅ **Gujarati** ✅ **Marathi** ✅ **Tamil** ✅ **Telugu** ✅ **Kannada** ✅ **Punjabi** ✅ **English** ## 🔥 **Why Akshara?** 🔹 **Made in India, for India & Global** 🇮🇳 🔹 **Optimized for speed and efficiency** ⚡ 🔹 **Seamless multilingual processing** 🗣️ 🔹 **Balanced accuracy and creativity** 🎨 🔹 **Lightweight and scalable for real-world applications** 🚀 --- ## 🛠️ **Usage Guide** ### Install Dependencies ```bash pip install transformers torch ``` ### Load the Model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "SVECTOR-CORPORATION/Akshara-8B-Llama-Multilingual-V0.1" # Load the model model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to("cuda") tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Sample input input_text = "भारत की सबसे बड़ी भाषा कौनसी है?" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") # Generate response output = model.generate(**input_ids, max_new_tokens=256) response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) ``` --- ## 💬 **Multi-turn Conversation Support** Akshara supports **multi-turn, dynamic conversations** across languages. ```python messages = [ {"role": "system", "content": "आप Akshara हैं, भारत के लिए बना एक AI, जो हिंदी, गुजराती, मराठी, तमिल, तेलुगु, कन्नड़, पंजाबी और अंग्रेजी में बातचीत कर सकता है।"}, {"role": "user", "content": "नमस्ते! आप क्या कर सकते हैं?"} ] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") outputs = model.generate(input_ids, max_new_tokens=256) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` --- ## 🌟 **Akshara: Built for the Future of AI in India** By embracing India’s linguistic diversity, Akshara represents a major step toward **bridging the AI gap** in our country. Whether it's **education, research, customer service, content creation, or smart automation**, Akshara is here to revolutionize **multilingual AI interactions**. ### **Join us as we shape the future of AI for India! 🇮🇳🚀** ## [Akshara](https://www.svector.co.in/akshara) ```bibtex @misc{SVECTOR2025Akshara, title = {Akshara: A Multilingual AI Model for India}, author = {SVECTOR}, year = {2025}, url = {https://svector.co.in}, note = {Developed by SVECTOR CORPORATION for multilingual AI Model}, }