Create akshara_tokenizer.py
Browse files- akshara_tokenizer.py +142 -0
akshara_tokenizer.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import regex as re
|
4 |
+
from typing import Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from transformers.utils import logging
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
class AksharaTokenizer(PreTrainedTokenizer):
|
12 |
+
"""
|
13 |
+
Akshara tokenizer for processing Indic language text.
|
14 |
+
This tokenizer handles characters at the akshara (syllable) level.
|
15 |
+
"""
|
16 |
+
|
17 |
+
vocab_files_names = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
|
18 |
+
model_input_names = ["input_ids", "attention_mask"]
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
vocab_file,
|
23 |
+
merges_file=None,
|
24 |
+
unk_token="<unk>",
|
25 |
+
bos_token="<s>",
|
26 |
+
eos_token="</s>",
|
27 |
+
pad_token="<pad>",
|
28 |
+
mask_token="<mask>",
|
29 |
+
add_prefix_space=False,
|
30 |
+
**kwargs
|
31 |
+
):
|
32 |
+
super().__init__(
|
33 |
+
unk_token=unk_token,
|
34 |
+
bos_token=bos_token,
|
35 |
+
eos_token=eos_token,
|
36 |
+
pad_token=pad_token,
|
37 |
+
mask_token=mask_token,
|
38 |
+
add_prefix_space=add_prefix_space,
|
39 |
+
**kwargs,
|
40 |
+
)
|
41 |
+
|
42 |
+
# Load vocabulary
|
43 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
44 |
+
self.encoder = json.load(vocab_handle)
|
45 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
46 |
+
|
47 |
+
# Load merges if available
|
48 |
+
self.merges = {}
|
49 |
+
if merges_file is not None and os.path.isfile(merges_file):
|
50 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
51 |
+
merges = merges_handle.read().split("\n")
|
52 |
+
self.merges = {tuple(merge.split()): i for i, merge in enumerate(merges) if merge}
|
53 |
+
|
54 |
+
# Special token handling
|
55 |
+
self.add_prefix_space = add_prefix_space
|
56 |
+
|
57 |
+
# Pre-compile regex patterns for tokenization
|
58 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
59 |
+
|
60 |
+
@property
|
61 |
+
def vocab_size(self):
|
62 |
+
return len(self.encoder)
|
63 |
+
|
64 |
+
def get_vocab(self):
|
65 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
66 |
+
|
67 |
+
def _tokenize(self, text):
|
68 |
+
"""Tokenize text into akshara units."""
|
69 |
+
if self.add_prefix_space and not text.startswith(" "):
|
70 |
+
text = " " + text
|
71 |
+
tokens = re.findall(self.pat, text)
|
72 |
+
return tokens
|
73 |
+
|
74 |
+
def _convert_token_to_id(self, token):
|
75 |
+
"""Convert a token to its ID in the vocabulary."""
|
76 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
77 |
+
|
78 |
+
def _convert_id_to_token(self, index):
|
79 |
+
"""Convert an ID to its token in the vocabulary."""
|
80 |
+
return self.decoder.get(index, self.unk_token)
|
81 |
+
|
82 |
+
def convert_tokens_to_string(self, tokens):
|
83 |
+
"""Convert a sequence of tokens to a single string."""
|
84 |
+
text = "".join(tokens)
|
85 |
+
text = text.replace(" ", "").replace("▁", " ").strip()
|
86 |
+
return text
|
87 |
+
|
88 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
89 |
+
"""Build model inputs from a sequence by appending eos_token_id."""
|
90 |
+
if token_ids_1 is None:
|
91 |
+
return [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
|
92 |
+
return [self.bos_token_id] + token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
93 |
+
|
94 |
+
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
|
95 |
+
"""Get list where entries are [1] if a token is special and [0] otherwise."""
|
96 |
+
if already_has_special_tokens:
|
97 |
+
return super().get_special_tokens_mask(
|
98 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
99 |
+
)
|
100 |
+
|
101 |
+
if token_ids_1 is None:
|
102 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
103 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
104 |
+
|
105 |
+
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
|
106 |
+
"""Create a mask from the two sequences for sequence classification tasks."""
|
107 |
+
eos = [self.eos_token_id]
|
108 |
+
bos = [self.bos_token_id]
|
109 |
+
|
110 |
+
if token_ids_1 is None:
|
111 |
+
return len(bos + token_ids_0 + eos) * [0]
|
112 |
+
return len(bos + token_ids_0 + eos) * [0] + len(token_ids_1 + eos) * [1]
|
113 |
+
|
114 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
115 |
+
"""Save the vocabulary and merges files to a directory."""
|
116 |
+
if not os.path.isdir(save_directory):
|
117 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
118 |
+
return
|
119 |
+
|
120 |
+
vocab_file = os.path.join(
|
121 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
|
122 |
+
)
|
123 |
+
|
124 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
125 |
+
f.write(json.dumps(self.encoder, ensure_ascii=False))
|
126 |
+
|
127 |
+
return (vocab_file,)
|
128 |
+
|
129 |
+
|
130 |
+
# Register the tokenizer with the AutoTokenizer class
|
131 |
+
from transformers import AutoTokenizer
|
132 |
+
AutoTokenizer.register("akshara", AksharaTokenizer)
|
133 |
+
|
134 |
+
# Register the model configuration if needed
|
135 |
+
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
|
136 |
+
if "akshara" not in CONFIG_MAPPING:
|
137 |
+
from transformers import PretrainedConfig
|
138 |
+
|
139 |
+
class AksharaConfig(PretrainedConfig):
|
140 |
+
model_type = "akshara"
|
141 |
+
|
142 |
+
CONFIG_MAPPING.register("akshara", AksharaConfig)
|