Text-to-Image
English
rockeycoss commited on
Commit
769c246
·
verified ·
1 Parent(s): d85e1da

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -77
README.md CHANGED
@@ -1,78 +1,91 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - yuvalkirstain/pickapic_v1
5
- language:
6
- - en
7
- pipeline_tag: text-to-image
8
- ---
9
- # Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step
10
-
11
- <a href="https://arxiv.org/abs/2406.04314"><img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge" height=22.5></a>
12
- <a href="https://github.com/RockeyCoss/SPO"><img src="https://img.shields.io/badge/Gihub-Code-succees?style=for-the-badge&logo=GitHub" height=22.5></a>
13
- <a href="https://rockeycoss.github.io/spo.github.io/"><img src="https://img.shields.io/badge/Project-Page-blue?style=for-the-badge" height=22.5></a>
14
-
15
- <table>
16
- <tr>
17
- <td><img src="assets/1.png" alt="teaser example 0" width="200"/></td>
18
- <td><img src="assets/2.png" alt="teaser example 1" width="200"/></td>
19
- <td><img src="assets/3.png" alt="teaser example 2" width="200"/></td>
20
- <td><img src="assets/4.png" alt="teaser example 3" width="200"/></td>
21
- </tr>
22
- </table>
23
-
24
- ## Abstract
25
- <p>
26
- Recently, Direct Preference Optimization (DPO) has extended its success from aligning large language models (LLMs) to aligning text-to-image diffusion models with human preferences.
27
- Unlike most existing DPO methods that assume all diffusion steps share a consistent preference order with the final generated images, we argue that this assumption neglects step-specific denoising performance and that preference labels should be tailored to each step's contribution.
28
- </p>
29
- <p>
30
- To address this limitation, we propose Step-aware Preference Optimization (SPO), a novel post-training approach that independently evaluates and adjusts the denoising performance at each step, using a <em>step-aware preference model</em> and a <em>step-wise resampler</em> to ensure accurate step-aware supervision.
31
- Specifically, at each denoising step, we sample a pool of images, find a suitable win-lose pair, and, most importantly, randomly select a single image from the pool to initialize the next denoising step. This step-wise resampler process ensures the next win-lose image pair comes from the same image, making the win-lose comparison independent of the previous step. To assess the preferences at each step, we train a separate step-aware preference model that can be applied to both noisy and clean images.
32
- </p>
33
- <p>
34
- Our experiments with Stable Diffusion v1.5 and SDXL demonstrate that SPO significantly outperforms the latest Diffusion-DPO in aligning generated images with complex, detailed prompts and enhancing aesthetics, while also achieving more than 20&times; times faster in training efficiency. Code and model: <a ref="https://rockeycoss.github.io/spo.github.io/">https://rockeycoss.github.io/spo.github.io/</a>
35
- </p>
36
-
37
- ## Model Description
38
-
39
- This model is fine-tuned from [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). It has been trained on 4,000 prompts for 10 epochs. This checkpoint is a LoRA checkpoint. We also provide a LoRA checkpoint compatible with [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui), which can be accessed [here](https://civitai.com/models/526379/spo-sd-v1-54k-p10eplorawebui)
40
-
41
- If you want to access the merged checkpoint that combines the LoRA checkpoint with the base model [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5), please visit [SPO-SD-v1-5_4k-p_10ep](https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep).
42
-
43
-
44
-
45
- ## A quick example
46
- ```python
47
- from diffusers import StableDiffusionPipeline
48
- import torch
49
-
50
- # load pipeline
51
- inference_dtype = torch.float16
52
- pipe = StableDiffusionPipeline.from_pretrained(
53
- "runwayml/stable-diffusion-v1-5",
54
- torch_dtype=inference_dtype,
55
- )
56
- pipe.load_lora_weights("SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA")
57
- pipe.to('cuda')
58
-
59
- generator=torch.Generator(device='cuda').manual_seed(42)
60
- image = pipe(
61
- prompt='an image of a beautiful lake',
62
- generator=generator,
63
- guidance_scale=7.5,
64
- output_type='pil',
65
- ).images[0]
66
- image.save('lake.png')
67
- ```
68
-
69
- ## Citation
70
- If you find our work or codebase useful, please consider giving us a star and citing our work.
71
- ```
72
- @article{liang2024step,
73
- title={Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step},
74
- author={Liang, Zhanhao and Yuan, Yuhui and Gu, Shuyang and Chen, Bohan and Hang, Tiankai and Li, Ji and Zheng, Liang},
75
- journal={arXiv preprint arXiv:2406.04314},
76
- year={2024}
77
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - yuvalkirstain/pickapic_v1
5
+ language:
6
+ - en
7
+ pipeline_tag: text-to-image
8
+ ---
9
+ # Aesthetic Post-Training Diffusion Models from Generic Preferences with Step-by-step Preference
10
+
11
+ <a href="https://arxiv.org/abs/2406.04314"><img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge" height=22.5></a>
12
+ <a href="https://github.com/RockeyCoss/SPO"><img src="https://img.shields.io/badge/Gihub-Code-succees?style=for-the-badge&logo=GitHub" height=22.5></a>
13
+ <a href="https://rockeycoss.github.io/spo.github.io/"><img src="https://img.shields.io/badge/Project-Page-blue?style=for-the-badge" height=22.5></a>
14
+
15
+ <table>
16
+ <tr>
17
+ <td><img src="assets/1.png" alt="teaser example 0" width="200"/></td>
18
+ <td><img src="assets/2.png" alt="teaser example 1" width="200"/></td>
19
+ <td><img src="assets/3.png" alt="teaser example 2" width="200"/></td>
20
+ <td><img src="assets/4.png" alt="teaser example 3" width="200"/></td>
21
+ </tr>
22
+ </table>
23
+
24
+ ## Abstract
25
+ <p>
26
+ Generating visually appealing images is fundamental to modern text-to-image generation models.
27
+ A potential solution to better aesthetics is direct preference optimization (DPO),
28
+ which has been applied to diffusion models to improve general image quality including prompt alignment and aesthetics.
29
+ Popular DPO methods propagate preference labels from clean image pairs to all the intermediate steps along the two generation trajectories.
30
+ However, preference labels provided in existing datasets are blended with layout and aesthetic opinions, which would disagree with aesthetic preference.
31
+ Even if aesthetic labels were provided (at substantial cost), it would be hard for the two-trajectory methods to capture nuanced visual differences at different steps.
32
+ </p>
33
+ <p>
34
+ To improve aesthetics economically, this paper uses existing generic preference data and introduces step-by-step preference optimization
35
+ (SPO) that discards the propagation strategy and allows fine-grained image details to be assessed. Specifically,
36
+ at each denoising step, we 1) sample a pool of candidates by denoising from a shared noise latent,
37
+ 2) use a step-aware preference model to find a suitable win-lose pair to supervise the diffusion model, and
38
+ 3) randomly select one from the pool to initialize the next denoising step.
39
+ This strategy ensures that diffusion models focus on the subtle, fine-grained visual differences
40
+ instead of layout aspect. We find that aesthetic can be significantly enhanced by accumulating these
41
+ improved minor differences.
42
+ </p>
43
+ <p>
44
+ When fine-tuning Stable Diffusion v1.5 and SDXL, SPO yields significant
45
+ improvements in aesthetics compared with existing DPO methods while not sacrificing image-text alignment
46
+ compared with vanilla models. Moreover, SPO converges much faster than DPO methods due to the step-by-step
47
+ alignment of fine-grained visual details.
48
+ </p>
49
+
50
+ ## Model Description
51
+
52
+ This model is fine-tuned from [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). It has been trained on 4,000 prompts for 10 epochs. This checkpoint is a LoRA checkpoint. We also provide a LoRA checkpoint compatible with [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui), which can be accessed [here](https://civitai.com/models/526379/spo-sd-v1-54k-p10eplorawebui)
53
+
54
+ If you want to access the merged checkpoint that combines the LoRA checkpoint with the base model [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5), please visit [SPO-SD-v1-5_4k-p_10ep](https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep).
55
+
56
+
57
+
58
+ ## A quick example
59
+ ```python
60
+ from diffusers import StableDiffusionPipeline
61
+ import torch
62
+
63
+ # load pipeline
64
+ inference_dtype = torch.float16
65
+ pipe = StableDiffusionPipeline.from_pretrained(
66
+ "runwayml/stable-diffusion-v1-5",
67
+ torch_dtype=inference_dtype,
68
+ )
69
+ pipe.load_lora_weights("SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA")
70
+ pipe.to('cuda')
71
+
72
+ generator=torch.Generator(device='cuda').manual_seed(42)
73
+ image = pipe(
74
+ prompt='an image of a beautiful lake',
75
+ generator=generator,
76
+ guidance_scale=7.5,
77
+ output_type='pil',
78
+ ).images[0]
79
+ image.save('lake.png')
80
+ ```
81
+
82
+ ## Citation
83
+ If you find our work or codebase useful, please consider giving us a star and citing our work.
84
+ ```
85
+ @article{liang2024step,
86
+ title={Aesthetic Post-Training Diffusion Models from Generic Preferences with Step-by-step Preference Optimization},
87
+ author={Liang, Zhanhao and Yuan, Yuhui and Gu, Shuyang and Chen, Bohan and Hang, Tiankai and Cheng, Mingxi and Li, Ji and Zheng, Liang},
88
+ journal={arXiv preprint arXiv:2406.04314},
89
+ year={2024}
90
+ }
91
  ```