--- base_model: unsloth/Qwen2.5-1.5B-Instruct library_name: peft license: mit datasets: - ituperceptron/turkish_medical_reasoning language: - tr pipeline_tag: question-answering tags: - medical - biology --- # Model Card for Turkish-Medical-R1 ## Model Details This model is a fine-tuned version of Qwen2.5-1.5B-Instruct for medical reasoning in Turkish. The model was trained on ituperceptron/turkish_medical_reasoning dataset, which contains instruction-tuned examples focused on clinical reasoning, diagnosis, patient care, and medical decision-making. ### Model Description - **Developed by:** Rustam Shiriyev - **Language(s) (NLP):** Turkish - **License:** MIT - **Finetuned from model:** unsloth/Qwen2.5-1.5B-Instruct ## Uses ### Direct Use - Medical Q&A in Turkish - Clinical reasoning tasks (educational or non-diagnostic) - Research on medical domain adaptation and multilingual LLMs ### Out-of-Scope Use This model is intended for research and educational purposes only. It should not be used for real-world medical decision-making or patient care. ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-1.5B-Instruct",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen2.5-1.5B-Instruct", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/Rustamshry/Turkish-Medical-R1") question = "Medüller tiroid karsinomu örneklerinin elektron mikroskopisinde gözlemlenen spesifik özellik nedir?" prompt = ( "### Talimat:\n" "Siz bir tıbb alanında uzmanlaşmış yapay zeka asistanısınız. Gelen soruları yalnızca Türkçe olarak, " "açıklayıcı bir şekilde yanıtlayın.\n\n" f"### Soru:\n{question.strip()}\n\n" f"### Cevap:\n" ) input_ids = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **input_ids, max_new_tokens=2048, ) print(tokenizer.decode(outputs[0])) ``` ## Training Data - Dataset: ituperceptron/turkish_medical_reasoning; Translated version of FreedomIntelligence/medical-o1-reasoning-SFT (Turkish, ~7K examples) ## Evaluation No formal quantitative evaluation yet. ### Framework versions - PEFT 0.15.2