--- base_model: unsloth/SmolLM2-360M-Instruct library_name: peft license: mit datasets: - UCSC-VLAA/MedReason language: - en pipeline_tag: question-answering tags: - medical --- # Model Card for SmolLM2-360M-MedReason ## Model Details This model is a fine-tuned version of SmolLM2-360M-Instruct on a **medical reasoning** dataset; **UCSC-VLAA/MedReason** ### Model Description - **Developed by:** Rustam Shiriyev - **Model type:** Instruction-tuned model - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** unsloth/SmolLM2-360M-Instruct ## How to Get Started with the Model ```python from peft import PeftModel from huggingface_hub import login from transformers import AutoTokenizer login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/SmolLM2-360M-MedReason",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/SmolLM2-360M-MedReason", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/SmolLM2-360M-MedReason") question = "Which of the following nipple discharge is most probably physiological?" options = """Answer Choices: A. B/L spontaneous discharge B. B/L milky discharge with squeezing from multiple ducts C. U/L bloody discharge D. U/L bloody discharge with squeezing from a single duct""" prompt = f"""### Question:\n{question}\n{options}\n\n### Response:\n""" input_ids = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **input_ids, max_new_tokens=2000, #temperature=0.6, #top_p=0.95, #do_sample=True, #eos_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0]),skip_special_tokens=True) ``` ### Framework versions - PEFT 0.14.0