--- base_model: unsloth/Qwen3-1.7B library_name: peft license: mit datasets: - Akhil-Theerthala/PersonalFinance_v2 language: - en pipeline_tag: question-answering tags: - finance --- # Model Card for Model ID ## Model Details This model is fine-tuned for instruction-following in the domain of personal finance, with a focus on: - Budgeting advice - Investment strategies - Credit management - Retirement planning - Insurance and financial planning concepts - Personalized financial reasoning ### Model Description - **License:** MIT - **Finetuned from model:** unsloth/Qwen3-1.7B - **Dataset:** The model was fine-tuned on the PersonalFinance_v2 dataset, curated and published by Akhil-Theerthala. ### Model Capabilities - Understands and provides contextual financial advice based on user queries. - Responds in a chat-like conversational format. - Trained to follow multi-turn instructions and deliver clear, structured, and accurate financial reasoning. - Generalizes well to novel personal finance questions and explanations. ## Uses ### Direct Use - Chatbots for personal finance - Educational assistants for financial literacy - Decision support for simple financial planning - Interactive personal finance Q&A systems ## Bias, Risks, and Limitations - Not a substitute for licensed financial advisors. - The model's advice is based on training data and may not reflect region-specific laws, regulations, or financial products. - May occasionally hallucinate or give generic responses in ambiguous scenarios. - Assumes user input is well-formed and relevant to personal finance. ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen3-1.7B", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen3-1.7B-finance-reasoning") question = """ $19k for a coding bootcamp Hi! I was just accepted into the full-time software engineering program with Flatiron and have approx. $0 to my name. I know I can get a loan with either Climb or accent with around 6.50% interest, is this a good option? I would theoretically be paying near $600/month. I really enjoy coding and would love to start a career in tech but the potential $19k price tag is pretty scary. Any advice? """ messages = [ {"role" : "user", "content" : question} ] text = tokenizer.apply_chat_template( messages, tokenize = False, add_generation_prompt = True, enable_thinking = True, ) from transformers import TextStreamer _ = model.generate( **tokenizer(text, return_tensors = "pt").to("cuda"), max_new_tokens = 2048, temperature = 0.6, top_p = 0.95, top_k = 20, streamer = TextStreamer(tokenizer, skip_prompt = True), ) ``` ## Training Details ### Training Data - Dataset Overview: PersonalFinance_v2 is a collection of high-quality instruction-response pairs focused on personal finance topics. It covers a wide range of subjects including budgeting, saving, investing, credit management, retirement planning, insurance, and financial literacy. - Data Format: The dataset consists of conversational-style prompts paired with detailed and well-structured responses. It is formatted to enable instruction-following language models to understand and generate coherent financial advice and reasoning. ### Framework versions - PEFT 0.14.0