--- base_model: unsloth/Qwen3-1.7B library_name: peft license: mit datasets: - OnlyCheeini/azerbaijani-math-gpt4o - mlabonne/FineTome-100k language: - az pipeline_tag: question-answering tags: - math --- # Model Card for Qwen3-1.7B-azerbaijani-math ## Model Details This model is a fine-tuned version of the Qwen3-1.7B, adapted for instruction-following in Azerbaijani, with focus on mathematical problem solving. The fine-tuning process improves the model’s ability to: - Understand and solve math problems written in Azerbaijani - Respond in a fluent, natural Azerbaijani style - Follow task-specific instructions with improved alignment and chat capability. ### Model Description - **Developed by:** Rustam Shiriyev - **Language(s) (NLP):** Azerbaijani - **License:** MIT - **Finetuned from model:** unsloth/Qwen3-1.7B ## Uses ### Direct Use This model is best suited for: - Solving and explaining math problems in Azerbaijani - Educational assistants and tutoring bots for Azerbaijani students ### Out-of-Scope Use - Not fine-tuned for factual correctness or safety filtering. ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen3-1.7B", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen3-1.7B-azerbaijani-math") question = "Bir f(x) funksiyası verilib: f(x) = 2x^2 + 3x + 4. Bu funksiyanın maksimum və ya minimum nöqtəsini hesablayın və nəticəni geniş izah edin." messages = [ {"role" : "user", "content" : question} ] text = tokenizer.apply_chat_template( messages, tokenize = False, add_generation_prompt = True, enable_thinking = False, ) from transformers import TextStreamer _ = model.generate( **tokenizer(text, return_tensors = "pt").to("cuda"), max_new_tokens = 512, temperature = 0.7, top_p = 0.8, top_k = 20, streamer = TextStreamer(tokenizer, skip_prompt = True), ) ``` ## Training Details ### Training Data The model was fine-tuned on a curated combination of: - OnlyCheeini/azerbaijani-math-gpt4o — 100,000 examples of Azerbaijani math instructions generated via GPT-4o, focused on algebra, geometry, and applied math. - mlabonne/FineTome-100k — 35,000 chat-style instruction samples (35% of the full dataset) to improve general-purpose instruction following and conversational ability. ### Framework versions - PEFT 0.14.0