--- base_model: unsloth/Qwen3-1.7B library_name: peft license: mit datasets: - omar07ibrahim/Alpaca_Stanford_Azerbaijan language: - az pipeline_tag: question-answering tags: - alpaca --- # Model Card for Model ID ## Model Details This model is a fine-tuned version of [`unsloth/Qwen3-1.7B`](https://huggingface.co/unsloth/Qwen3-1.7B) on a translated version of the **Alpaca Stanford dataset** in **Azerbaijani language**. The model is instruction-tuned to better follow prompts and generate relevant responses in Azerbaijani. ### Model Description - **Language(s) (NLP):** Azerbaijani - **License:** MIT - **Finetuned from model:** unsloth/Qwen3-1.7B ## Uses ### Direct Use - Instruction following in Azerbaijani - Education, research, and experimentation with low-resource language LLMs - Chatbots, task-oriented systems, language agents ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen3-1.7B", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen3-1.7B-Alpaca-Azerbaijani") question = "Bir sifət əlavə edərək aşağıdakı cümləni yenidən yazın. Tələbə mürəkkəb anlayışları anlaya bildi. " messages = [ {"role" : "user", "content" : question} ] text = tokenizer.apply_chat_template( messages, tokenize = False, add_generation_prompt = True, enable_thinking = False, ) from transformers import TextStreamer _ = model.generate( **tokenizer(text, return_tensors = "pt").to("cuda"), max_new_tokens = 2048, temperature = 0.7, top_p = 0.8, top_k = 20, streamer = TextStreamer(tokenizer, skip_prompt = True), ) ``` ## Training Data - **Dataset:** omar07ibrahim/Alpaca_Stanford_Azerbaijan ### Framework versions - PEFT 0.14.0