RomainDarous commited on
Commit
b59a87d
·
verified ·
1 Parent(s): 3f2616f

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_MultiHeadGeneralizedPooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "sentence_dim": 768,
3
+ "token_dim": 768,
4
+ "num_heads": 8,
5
+ "initialize": 1,
6
+ "pooling_type": 2
7
+ }
README.md ADDED
@@ -0,0 +1,1058 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - nl
9
+ - pl
10
+ - pt
11
+ - ru
12
+ - zh
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:51741
19
+ - loss:CoSENTLoss
20
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
21
+ widget:
22
+ - source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
23
+ sentences:
24
+ - Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
25
+ - Grupa starszych osób pozuje wokół stołu w jadalni.
26
+ - Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
27
+ - source_sentence: Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
28
+ und in der Gastfreundschaft und im Tourismusgeschäft.
29
+ sentences:
30
+ - Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh herumgereist,
31
+ und ich hatte kein Problem damit, nur mit Englisch auszukommen.
32
+ - 'Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn, glaube ich,
33
+ κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr; Vokativform: κύριε).'
34
+ - Das Paar lag auf dem Bett.
35
+ - source_sentence: Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup
36
+ plus de chances de gagner n'importe quelle bataille.
37
+ sentences:
38
+ - 'Outre les probabilités de gagner une bataille théorique, cette citation a une
39
+ autre signification : l''importance de connaître/comprendre les autres.'
40
+ - Une femme et un chien se promènent ensemble.
41
+ - Un homme joue de la guitare.
42
+ - source_sentence: Un homme joue de la harpe.
43
+ sentences:
44
+ - Une femme joue de la guitare.
45
+ - une femme a un enfant.
46
+ - Un groupe de personnes est debout et assis sur le sol la nuit.
47
+ - source_sentence: Dois cães a lutar na neve.
48
+ sentences:
49
+ - Dois cães brincam na neve.
50
+ - Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
51
+ - Um gato está a caminhar sobre chão de madeira dura.
52
+ datasets:
53
+ - PhilipMay/stsb_multi_mt
54
+ pipeline_tag: sentence-similarity
55
+ library_name: sentence-transformers
56
+ metrics:
57
+ - pearson_cosine
58
+ - spearman_cosine
59
+ model-index:
60
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: sts eval
67
+ type: sts-eval
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.8446891977868011
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.8596979163659482
74
+ name: Spearman Cosine
75
+ - type: pearson_cosine
76
+ value: 0.844632779026908
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: 0.861473045703285
80
+ name: Spearman Cosine
81
+ - type: pearson_cosine
82
+ value: 0.8440164545727995
83
+ name: Pearson Cosine
84
+ - type: spearman_cosine
85
+ value: 0.8612186224540714
86
+ name: Spearman Cosine
87
+ - type: pearson_cosine
88
+ value: 0.8420300309281104
89
+ name: Pearson Cosine
90
+ - type: spearman_cosine
91
+ value: 0.858278578325863
92
+ name: Spearman Cosine
93
+ - type: pearson_cosine
94
+ value: 0.8420008201558307
95
+ name: Pearson Cosine
96
+ - type: spearman_cosine
97
+ value: 0.8580758116653326
98
+ name: Spearman Cosine
99
+ - type: pearson_cosine
100
+ value: 0.8379222267438624
101
+ name: Pearson Cosine
102
+ - type: spearman_cosine
103
+ value: 0.8546426897021648
104
+ name: Spearman Cosine
105
+ - type: pearson_cosine
106
+ value: 0.8410384886735764
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.858206201051844
110
+ name: Spearman Cosine
111
+ - type: pearson_cosine
112
+ value: 0.8388581512062692
113
+ name: Pearson Cosine
114
+ - type: spearman_cosine
115
+ value: 0.854949185058122
116
+ name: Spearman Cosine
117
+ - type: pearson_cosine
118
+ value: 0.8393916480551973
119
+ name: Pearson Cosine
120
+ - type: spearman_cosine
121
+ value: 0.8551158223136024
122
+ name: Spearman Cosine
123
+ - task:
124
+ type: semantic-similarity
125
+ name: Semantic Similarity
126
+ dataset:
127
+ name: sts test
128
+ type: sts-test
129
+ metrics:
130
+ - type: pearson_cosine
131
+ value: 0.7509690649476883
132
+ name: Pearson Cosine
133
+ - type: spearman_cosine
134
+ value: 0.748913006922209
135
+ name: Spearman Cosine
136
+ - type: pearson_cosine
137
+ value: 0.7264091359733592
138
+ name: Pearson Cosine
139
+ - type: spearman_cosine
140
+ value: 0.7183277950468808
141
+ name: Spearman Cosine
142
+ - type: pearson_cosine
143
+ value: 0.7841303752294032
144
+ name: Pearson Cosine
145
+ - type: spearman_cosine
146
+ value: 0.7831964409165716
147
+ name: Spearman Cosine
148
+ - type: pearson_cosine
149
+ value: 0.8370378910040422
150
+ name: Pearson Cosine
151
+ - type: spearman_cosine
152
+ value: 0.8417577178864784
153
+ name: Spearman Cosine
154
+ - type: pearson_cosine
155
+ value: 0.6882152206120186
156
+ name: Pearson Cosine
157
+ - type: spearman_cosine
158
+ value: 0.7024539547789144
159
+ name: Spearman Cosine
160
+ - type: pearson_cosine
161
+ value: 0.7933077869138075
162
+ name: Pearson Cosine
163
+ - type: spearman_cosine
164
+ value: 0.8041721116751233
165
+ name: Spearman Cosine
166
+ - type: pearson_cosine
167
+ value: 0.8378620327834261
168
+ name: Pearson Cosine
169
+ - type: spearman_cosine
170
+ value: 0.8321351403622409
171
+ name: Spearman Cosine
172
+ - type: pearson_cosine
173
+ value: 0.7750555328181254
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.7655495640498702
177
+ name: Spearman Cosine
178
+ - type: pearson_cosine
179
+ value: 0.793579839252908
180
+ name: Pearson Cosine
181
+ - type: spearman_cosine
182
+ value: 0.7896396959056725
183
+ name: Spearman Cosine
184
+ - type: pearson_cosine
185
+ value: 0.7821687767048703
186
+ name: Pearson Cosine
187
+ - type: spearman_cosine
188
+ value: 0.7810073025582056
189
+ name: Spearman Cosine
190
+ ---
191
+
192
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
193
+
194
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) and [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
195
+
196
+ ## Model Details
197
+
198
+ ### Model Description
199
+ - **Model Type:** Sentence Transformer
200
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 84fccfe766bcfd679e39efefe4ebf45af190ad2d -->
201
+ - **Maximum Sequence Length:** 128 tokens
202
+ - **Output Dimensionality:** 768 dimensions
203
+ - **Similarity Function:** Cosine Similarity
204
+ - **Training Datasets:**
205
+ - [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
206
+ - [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
207
+ - [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
208
+ - [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
209
+ - [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
210
+ - [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
211
+ - [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
212
+ - [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
213
+ - [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
214
+ - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
215
+ <!-- - **License:** Unknown -->
216
+
217
+ ### Model Sources
218
+
219
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
220
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
221
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
222
+
223
+ ### Full Model Architecture
224
+
225
+ ```
226
+ SentenceTransformer(
227
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
228
+ (1): MultiHeadGeneralizedPooling()
229
+ )
230
+ ```
231
+
232
+ ## Usage
233
+
234
+ ### Direct Usage (Sentence Transformers)
235
+
236
+ First install the Sentence Transformers library:
237
+
238
+ ```bash
239
+ pip install -U sentence-transformers
240
+ ```
241
+
242
+ Then you can load this model and run inference.
243
+ ```python
244
+ from sentence_transformers import SentenceTransformer
245
+
246
+ # Download from the 🤗 Hub
247
+ model = SentenceTransformer("RomainDarous/large_directFourEpoch_meanPooling_stsModel")
248
+ # Run inference
249
+ sentences = [
250
+ 'Dois cães a lutar na neve.',
251
+ 'Dois cães brincam na neve.',
252
+ 'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
253
+ ]
254
+ embeddings = model.encode(sentences)
255
+ print(embeddings.shape)
256
+ # [3, 768]
257
+
258
+ # Get the similarity scores for the embeddings
259
+ similarities = model.similarity(embeddings, embeddings)
260
+ print(similarities.shape)
261
+ # [3, 3]
262
+ ```
263
+
264
+ <!--
265
+ ### Direct Usage (Transformers)
266
+
267
+ <details><summary>Click to see the direct usage in Transformers</summary>
268
+
269
+ </details>
270
+ -->
271
+
272
+ <!--
273
+ ### Downstream Usage (Sentence Transformers)
274
+
275
+ You can finetune this model on your own dataset.
276
+
277
+ <details><summary>Click to expand</summary>
278
+
279
+ </details>
280
+ -->
281
+
282
+ <!--
283
+ ### Out-of-Scope Use
284
+
285
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
286
+ -->
287
+
288
+ ## Evaluation
289
+
290
+ ### Metrics
291
+
292
+ #### Semantic Similarity
293
+
294
+ * Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test`
295
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
296
+
297
+ | Metric | sts-eval | sts-test |
298
+ |:--------------------|:-----------|:----------|
299
+ | pearson_cosine | 0.8447 | 0.7822 |
300
+ | **spearman_cosine** | **0.8597** | **0.781** |
301
+
302
+ #### Semantic Similarity
303
+
304
+ * Dataset: `sts-eval`
305
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
306
+
307
+ | Metric | Value |
308
+ |:--------------------|:-----------|
309
+ | pearson_cosine | 0.8446 |
310
+ | **spearman_cosine** | **0.8615** |
311
+
312
+ #### Semantic Similarity
313
+
314
+ * Dataset: `sts-eval`
315
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
316
+
317
+ | Metric | Value |
318
+ |:--------------------|:-----------|
319
+ | pearson_cosine | 0.844 |
320
+ | **spearman_cosine** | **0.8612** |
321
+
322
+ #### Semantic Similarity
323
+
324
+ * Dataset: `sts-eval`
325
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
326
+
327
+ | Metric | Value |
328
+ |:--------------------|:-----------|
329
+ | pearson_cosine | 0.842 |
330
+ | **spearman_cosine** | **0.8583** |
331
+
332
+ #### Semantic Similarity
333
+
334
+ * Dataset: `sts-eval`
335
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
336
+
337
+ | Metric | Value |
338
+ |:--------------------|:-----------|
339
+ | pearson_cosine | 0.842 |
340
+ | **spearman_cosine** | **0.8581** |
341
+
342
+ #### Semantic Similarity
343
+
344
+ * Dataset: `sts-eval`
345
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
346
+
347
+ | Metric | Value |
348
+ |:--------------------|:-----------|
349
+ | pearson_cosine | 0.8379 |
350
+ | **spearman_cosine** | **0.8546** |
351
+
352
+ #### Semantic Similarity
353
+
354
+ * Dataset: `sts-eval`
355
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
356
+
357
+ | Metric | Value |
358
+ |:--------------------|:-----------|
359
+ | pearson_cosine | 0.841 |
360
+ | **spearman_cosine** | **0.8582** |
361
+
362
+ #### Semantic Similarity
363
+
364
+ * Dataset: `sts-eval`
365
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
366
+
367
+ | Metric | Value |
368
+ |:--------------------|:-----------|
369
+ | pearson_cosine | 0.8389 |
370
+ | **spearman_cosine** | **0.8549** |
371
+
372
+ #### Semantic Similarity
373
+
374
+ * Dataset: `sts-eval`
375
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
376
+
377
+ | Metric | Value |
378
+ |:--------------------|:-----------|
379
+ | pearson_cosine | 0.8394 |
380
+ | **spearman_cosine** | **0.8551** |
381
+
382
+ <!--
383
+ ## Bias, Risks and Limitations
384
+
385
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
386
+ -->
387
+
388
+ <!--
389
+ ### Recommendations
390
+
391
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
392
+ -->
393
+
394
+ ## Training Details
395
+
396
+ ### Training Datasets
397
+ <details><summary>multi_stsb_de</summary>
398
+
399
+ #### multi_stsb_de
400
+
401
+ * Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
402
+ * Size: 5,749 training samples
403
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
404
+ * Approximate statistics based on the first 1000 samples:
405
+ | | sentence1 | sentence2 | score |
406
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
407
+ | type | string | string | float |
408
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.58 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.53 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
409
+ * Samples:
410
+ | sentence1 | sentence2 | score |
411
+ |:---------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
412
+ | <code>Ein Flugzeug hebt gerade ab.</code> | <code>Ein Flugzeug hebt gerade ab.</code> | <code>1.0</code> |
413
+ | <code>Ein Mann spielt eine große Flöte.</code> | <code>Ein Mann spielt eine Flöte.</code> | <code>0.7599999904632568</code> |
414
+ | <code>Ein Mann streicht geriebenen Käse auf eine Pizza.</code> | <code>Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.</code> | <code>0.7599999904632568</code> |
415
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
416
+ ```json
417
+ {
418
+ "scale": 20.0,
419
+ "similarity_fct": "pairwise_cos_sim"
420
+ }
421
+ ```
422
+ </details>
423
+ <details><summary>multi_stsb_es</summary>
424
+
425
+ #### multi_stsb_es
426
+
427
+ * Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
428
+ * Size: 5,749 training samples
429
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
430
+ * Approximate statistics based on the first 1000 samples:
431
+ | | sentence1 | sentence2 | score |
432
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
433
+ | type | string | string | float |
434
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.21 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.07 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
435
+ * Samples:
436
+ | sentence1 | sentence2 | score |
437
+ |:----------------------------------------------------------------|:----------------------------------------------------------------------|:--------------------------------|
438
+ | <code>Un avión está despegando.</code> | <code>Un avión está despegando.</code> | <code>1.0</code> |
439
+ | <code>Un hombre está tocando una gran flauta.</code> | <code>Un hombre está tocando una flauta.</code> | <code>0.7599999904632568</code> |
440
+ | <code>Un hombre está untando queso rallado en una pizza.</code> | <code>Un hombre está untando queso rallado en una pizza cruda.</code> | <code>0.7599999904632568</code> |
441
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
442
+ ```json
443
+ {
444
+ "scale": 20.0,
445
+ "similarity_fct": "pairwise_cos_sim"
446
+ }
447
+ ```
448
+ </details>
449
+ <details><summary>multi_stsb_fr</summary>
450
+
451
+ #### multi_stsb_fr
452
+
453
+ * Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
454
+ * Size: 5,749 training samples
455
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
456
+ * Approximate statistics based on the first 1000 samples:
457
+ | | sentence1 | sentence2 | score |
458
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
459
+ | type | string | string | float |
460
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.6 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.49 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
461
+ * Samples:
462
+ | sentence1 | sentence2 | score |
463
+ |:-----------------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
464
+ | <code>Un avion est en train de décoller.</code> | <code>Un avion est en train de décoller.</code> | <code>1.0</code> |
465
+ | <code>Un homme joue d'une grande flûte.</code> | <code>Un homme joue de la flûte.</code> | <code>0.7599999904632568</code> |
466
+ | <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>0.7599999904632568</code> |
467
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
468
+ ```json
469
+ {
470
+ "scale": 20.0,
471
+ "similarity_fct": "pairwise_cos_sim"
472
+ }
473
+ ```
474
+ </details>
475
+ <details><summary>multi_stsb_it</summary>
476
+
477
+ #### multi_stsb_it
478
+
479
+ * Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
480
+ * Size: 5,749 training samples
481
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
482
+ * Approximate statistics based on the first 1000 samples:
483
+ | | sentence1 | sentence2 | score |
484
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
485
+ | type | string | string | float |
486
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.77 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.69 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
487
+ * Samples:
488
+ | sentence1 | sentence2 | score |
489
+ |:--------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------|
490
+ | <code>Un aereo sta decollando.</code> | <code>Un aereo sta decollando.</code> | <code>1.0</code> |
491
+ | <code>Un uomo sta suonando un grande flauto.</code> | <code>Un uomo sta suonando un flauto.</code> | <code>0.7599999904632568</code> |
492
+ | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza.</code> | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.</code> | <code>0.7599999904632568</code> |
493
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
494
+ ```json
495
+ {
496
+ "scale": 20.0,
497
+ "similarity_fct": "pairwise_cos_sim"
498
+ }
499
+ ```
500
+ </details>
501
+ <details><summary>multi_stsb_nl</summary>
502
+
503
+ #### multi_stsb_nl
504
+
505
+ * Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
506
+ * Size: 5,749 training samples
507
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
508
+ * Approximate statistics based on the first 1000 samples:
509
+ | | sentence1 | sentence2 | score |
510
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
511
+ | type | string | string | float |
512
+ | details | <ul><li>min: 6 tokens</li><li>mean: 11.67 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.55 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
513
+ * Samples:
514
+ | sentence1 | sentence2 | score |
515
+ |:--------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------|
516
+ | <code>Er gaat een vliegtuig opstijgen.</code> | <code>Er gaat een vliegtuig opstijgen.</code> | <code>1.0</code> |
517
+ | <code>Een man speelt een grote fluit.</code> | <code>Een man speelt fluit.</code> | <code>0.7599999904632568</code> |
518
+ | <code>Een man smeert geraspte kaas op een pizza.</code> | <code>Een man strooit geraspte kaas op een ongekookte pizza.</code> | <code>0.7599999904632568</code> |
519
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
520
+ ```json
521
+ {
522
+ "scale": 20.0,
523
+ "similarity_fct": "pairwise_cos_sim"
524
+ }
525
+ ```
526
+ </details>
527
+ <details><summary>multi_stsb_pl</summary>
528
+
529
+ #### multi_stsb_pl
530
+
531
+ * Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
532
+ * Size: 5,749 training samples
533
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
534
+ * Approximate statistics based on the first 1000 samples:
535
+ | | sentence1 | sentence2 | score |
536
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
537
+ | type | string | string | float |
538
+ | details | <ul><li>min: 5 tokens</li><li>mean: 12.2 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.11 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
539
+ * Samples:
540
+ | sentence1 | sentence2 | score |
541
+ |:-----------------------------------------------------------|:------------------------------------------------------------------------|:--------------------------------|
542
+ | <code>Samolot wystartował.</code> | <code>Samolot wystartował.</code> | <code>1.0</code> |
543
+ | <code>Człowiek gra na dużym flecie.</code> | <code>Człowiek gra na flecie.</code> | <code>0.7599999904632568</code> |
544
+ | <code>Mężczyzna rozsiewa na pizzy rozdrobniony ser.</code> | <code>Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.</code> | <code>0.7599999904632568</code> |
545
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
546
+ ```json
547
+ {
548
+ "scale": 20.0,
549
+ "similarity_fct": "pairwise_cos_sim"
550
+ }
551
+ ```
552
+ </details>
553
+ <details><summary>multi_stsb_pt</summary>
554
+
555
+ #### multi_stsb_pt
556
+
557
+ * Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
558
+ * Size: 5,749 training samples
559
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
560
+ * Approximate statistics based on the first 1000 samples:
561
+ | | sentence1 | sentence2 | score |
562
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
563
+ | type | string | string | float |
564
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.33 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.29 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
565
+ * Samples:
566
+ | sentence1 | sentence2 | score |
567
+ |:------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------|
568
+ | <code>Um avião está a descolar.</code> | <code>Um avião aéreo está a descolar.</code> | <code>1.0</code> |
569
+ | <code>Um homem está a tocar uma grande flauta.</code> | <code>Um homem está a tocar uma flauta.</code> | <code>0.7599999904632568</code> |
570
+ | <code>Um homem está a espalhar queijo desfiado numa pizza.</code> | <code>Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.</code> | <code>0.7599999904632568</code> |
571
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
572
+ ```json
573
+ {
574
+ "scale": 20.0,
575
+ "similarity_fct": "pairwise_cos_sim"
576
+ }
577
+ ```
578
+ </details>
579
+ <details><summary>multi_stsb_ru</summary>
580
+
581
+ #### multi_stsb_ru
582
+
583
+ * Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
584
+ * Size: 5,749 training samples
585
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
586
+ * Approximate statistics based on the first 1000 samples:
587
+ | | sentence1 | sentence2 | score |
588
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
589
+ | type | string | string | float |
590
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.19 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.17 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
591
+ * Samples:
592
+ | sentence1 | sentence2 | score |
593
+ |:------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
594
+ | <code>Самолет взлетает.</code> | <code>Взлетает самолет.</code> | <code>1.0</code> |
595
+ | <code>Человек играет на большой флейте.</code> | <code>Человек играет на флейте.</code> | <code>0.7599999904632568</code> |
596
+ | <code>Мужчина разбрасывает сыр на пиццу.</code> | <code>Мужчина разбрасывает измельченный сыр на вареную пиццу.</code> | <code>0.7599999904632568</code> |
597
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
598
+ ```json
599
+ {
600
+ "scale": 20.0,
601
+ "similarity_fct": "pairwise_cos_sim"
602
+ }
603
+ ```
604
+ </details>
605
+ <details><summary>multi_stsb_zh</summary>
606
+
607
+ #### multi_stsb_zh
608
+
609
+ * Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
610
+ * Size: 5,749 training samples
611
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
612
+ * Approximate statistics based on the first 1000 samples:
613
+ | | sentence1 | sentence2 | score |
614
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
615
+ | type | string | string | float |
616
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.7 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.79 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
617
+ * Samples:
618
+ | sentence1 | sentence2 | score |
619
+ |:------------------------------|:----------------------------------|:--------------------------------|
620
+ | <code>一架飞机正在起飞。</code> | <code>一架飞机正在起飞。</code> | <code>1.0</code> |
621
+ | <code>一个男人正在吹一支大笛子。</code> | <code>一个人在吹笛子。</code> | <code>0.7599999904632568</code> |
622
+ | <code>一名男子正在比萨饼上涂抹奶酪丝。</code> | <code>一名男子正在将奶酪丝涂抹在未熟的披萨上。</code> | <code>0.7599999904632568</code> |
623
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
624
+ ```json
625
+ {
626
+ "scale": 20.0,
627
+ "similarity_fct": "pairwise_cos_sim"
628
+ }
629
+ ```
630
+ </details>
631
+
632
+ ### Evaluation Datasets
633
+ <details><summary>multi_stsb_de</summary>
634
+
635
+ #### multi_stsb_de
636
+
637
+ * Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
638
+ * Size: 1,500 evaluation samples
639
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
640
+ * Approximate statistics based on the first 1000 samples:
641
+ | | sentence1 | sentence2 | score |
642
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
643
+ | type | string | string | float |
644
+ | details | <ul><li>min: 5 tokens</li><li>mean: 18.25 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
645
+ * Samples:
646
+ | sentence1 | sentence2 | score |
647
+ |:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
648
+ | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
649
+ | <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
650
+ | <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
651
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
652
+ ```json
653
+ {
654
+ "scale": 20.0,
655
+ "similarity_fct": "pairwise_cos_sim"
656
+ }
657
+ ```
658
+ </details>
659
+ <details><summary>multi_stsb_es</summary>
660
+
661
+ #### multi_stsb_es
662
+
663
+ * Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
664
+ * Size: 1,500 evaluation samples
665
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
666
+ * Approximate statistics based on the first 1000 samples:
667
+ | | sentence1 | sentence2 | score |
668
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
669
+ | type | string | string | float |
670
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.86 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
671
+ * Samples:
672
+ | sentence1 | sentence2 | score |
673
+ |:----------------------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------|
674
+ | <code>Un hombre con un casco está bailando.</code> | <code>Un hombre con un casco está bailando.</code> | <code>1.0</code> |
675
+ | <code>Un niño pequeño está montando a caballo.</code> | <code>Un niño está montando a caballo.</code> | <code>0.949999988079071</code> |
676
+ | <code>Un hombre está alimentando a una serpiente con un ratón.</code> | <code>El hombre está alimentando a la serpiente con un ratón.</code> | <code>1.0</code> |
677
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
678
+ ```json
679
+ {
680
+ "scale": 20.0,
681
+ "similarity_fct": "pairwise_cos_sim"
682
+ }
683
+ ```
684
+ </details>
685
+ <details><summary>multi_stsb_fr</summary>
686
+
687
+ #### multi_stsb_fr
688
+
689
+ * Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
690
+ * Size: 1,500 evaluation samples
691
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
692
+ * Approximate statistics based on the first 1000 samples:
693
+ | | sentence1 | sentence2 | score |
694
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
695
+ | type | string | string | float |
696
+ | details | <ul><li>min: 6 tokens</li><li>mean: 19.7 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.65 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
697
+ * Samples:
698
+ | sentence1 | sentence2 | score |
699
+ |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
700
+ | <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>1.0</code> |
701
+ | <code>Un jeune enfant monte à cheval.</code> | <code>Un enfant monte à cheval.</code> | <code>0.949999988079071</code> |
702
+ | <code>Un homme donne une souris à un serpent.</code> | <code>L'homme donne une souris au serpent.</code> | <code>1.0</code> |
703
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
704
+ ```json
705
+ {
706
+ "scale": 20.0,
707
+ "similarity_fct": "pairwise_cos_sim"
708
+ }
709
+ ```
710
+ </details>
711
+ <details><summary>multi_stsb_it</summary>
712
+
713
+ #### multi_stsb_it
714
+
715
+ * Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
716
+ * Size: 1,500 evaluation samples
717
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
718
+ * Approximate statistics based on the first 1000 samples:
719
+ | | sentence1 | sentence2 | score |
720
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
721
+ | type | string | string | float |
722
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.42 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.43 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
723
+ * Samples:
724
+ | sentence1 | sentence2 | score |
725
+ |:------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------|
726
+ | <code>Un uomo con l'elmetto sta ballando.</code> | <code>Un uomo che indossa un elmetto sta ballando.</code> | <code>1.0</code> |
727
+ | <code>Un bambino piccolo sta cavalcando un cavallo.</code> | <code>Un bambino sta cavalcando un cavallo.</code> | <code>0.949999988079071</code> |
728
+ | <code>Un uomo sta dando da mangiare un topo a un serpente.</code> | <code>L'uomo sta dando da mangiare un topo al serpente.</code> | <code>1.0</code> |
729
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
730
+ ```json
731
+ {
732
+ "scale": 20.0,
733
+ "similarity_fct": "pairwise_cos_sim"
734
+ }
735
+ ```
736
+ </details>
737
+ <details><summary>multi_stsb_nl</summary>
738
+
739
+ #### multi_stsb_nl
740
+
741
+ * Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
742
+ * Size: 1,500 evaluation samples
743
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
744
+ * Approximate statistics based on the first 1000 samples:
745
+ | | sentence1 | sentence2 | score |
746
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
747
+ | type | string | string | float |
748
+ | details | <ul><li>min: 5 tokens</li><li>mean: 17.88 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.71 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
749
+ * Samples:
750
+ | sentence1 | sentence2 | score |
751
+ |:-----------------------------------------------------|:-----------------------------------------------------|:-------------------------------|
752
+ | <code>Een man met een helm is aan het dansen.</code> | <code>Een man met een helm is aan het dansen.</code> | <code>1.0</code> |
753
+ | <code>Een jong kind rijdt op een paard.</code> | <code>Een kind rijdt op een paard.</code> | <code>0.949999988079071</code> |
754
+ | <code>Een man voedt een muis aan een slang.</code> | <code>De man voert een muis aan de slang.</code> | <code>1.0</code> |
755
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
756
+ ```json
757
+ {
758
+ "scale": 20.0,
759
+ "similarity_fct": "pairwise_cos_sim"
760
+ }
761
+ ```
762
+ </details>
763
+ <details><summary>multi_stsb_pl</summary>
764
+
765
+ #### multi_stsb_pl
766
+
767
+ * Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
768
+ * Size: 1,500 evaluation samples
769
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
770
+ * Approximate statistics based on the first 1000 samples:
771
+ | | sentence1 | sentence2 | score |
772
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
773
+ | type | string | string | float |
774
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.43 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
775
+ * Samples:
776
+ | sentence1 | sentence2 | score |
777
+ |:---------------------------------------------------|:---------------------------------------------------|:-------------------------------|
778
+ | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>1.0</code> |
779
+ | <code>Małe dziecko jedzie na koniu.</code> | <code>Dziecko jedzie na koniu.</code> | <code>0.949999988079071</code> |
780
+ | <code>Człowiek karmi węża myszką.</code> | <code>Ten człowiek karmi węża myszką.</code> | <code>1.0</code> |
781
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
782
+ ```json
783
+ {
784
+ "scale": 20.0,
785
+ "similarity_fct": "pairwise_cos_sim"
786
+ }
787
+ ```
788
+ </details>
789
+ <details><summary>multi_stsb_pt</summary>
790
+
791
+ #### multi_stsb_pt
792
+
793
+ * Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
794
+ * Size: 1,500 evaluation samples
795
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
796
+ * Approximate statistics based on the first 1000 samples:
797
+ | | sentence1 | sentence2 | score |
798
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
799
+ | type | string | string | float |
800
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.22 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 18.11 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
801
+ * Samples:
802
+ | sentence1 | sentence2 | score |
803
+ |:------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
804
+ | <code>Um homem de chapéu duro está a dançar.</code> | <code>Um homem com um capacete está a dançar.</code> | <code>1.0</code> |
805
+ | <code>Uma criança pequena está a montar a cavalo.</code> | <code>Uma criança está a montar a cavalo.</code> | <code>0.949999988079071</code> |
806
+ | <code>Um homem está a alimentar um rato a uma cobra.</code> | <code>O homem está a alimentar a cobra com um rato.</code> | <code>1.0</code> |
807
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
808
+ ```json
809
+ {
810
+ "scale": 20.0,
811
+ "similarity_fct": "pairwise_cos_sim"
812
+ }
813
+ ```
814
+ </details>
815
+ <details><summary>multi_stsb_ru</summary>
816
+
817
+ #### multi_stsb_ru
818
+
819
+ * Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
820
+ * Size: 1,500 evaluation samples
821
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
822
+ * Approximate statistics based on the first 1000 samples:
823
+ | | sentence1 | sentence2 | score |
824
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
825
+ | type | string | string | float |
826
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.92 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.75 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
827
+ * Samples:
828
+ | sentence1 | sentence2 | score |
829
+ |:------------------------------------------------------|:----------------------------------------------|:-------------------------------|
830
+ | <code>Человек в твердой шляпе танцует.</code> | <code>Мужчина в твердой шляпе танцует.</code> | <code>1.0</code> |
831
+ | <code>Маленький ребенок едет верхом на лошади.</code> | <code>Ребенок едет на лошади.</code> | <code>0.949999988079071</code> |
832
+ | <code>Мужчина кормит мышь змее.</code> | <code>Человек кормит змею мышью.</code> | <code>1.0</code> |
833
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
834
+ ```json
835
+ {
836
+ "scale": 20.0,
837
+ "similarity_fct": "pairwise_cos_sim"
838
+ }
839
+ ```
840
+ </details>
841
+ <details><summary>multi_stsb_zh</summary>
842
+
843
+ #### multi_stsb_zh
844
+
845
+ * Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
846
+ * Size: 1,500 evaluation samples
847
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
848
+ * Approximate statistics based on the first 1000 samples:
849
+ | | sentence1 | sentence2 | score |
850
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
851
+ | type | string | string | float |
852
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.37 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.24 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
853
+ * Samples:
854
+ | sentence1 | sentence2 | score |
855
+ |:---------------------------|:--------------------------|:-------------------------------|
856
+ | <code>一个戴着硬帽子的人在跳舞。</code> | <code>一个戴着硬帽的人在跳舞。</code> | <code>1.0</code> |
857
+ | <code>一个小孩子在骑马。</code> | <code>一个孩子在骑马。</code> | <code>0.949999988079071</code> |
858
+ | <code>一个人正在用老鼠喂蛇。</code> | <code>那人正在给蛇喂老鼠。</code> | <code>1.0</code> |
859
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
860
+ ```json
861
+ {
862
+ "scale": 20.0,
863
+ "similarity_fct": "pairwise_cos_sim"
864
+ }
865
+ ```
866
+ </details>
867
+
868
+ ### Training Hyperparameters
869
+ #### Non-Default Hyperparameters
870
+
871
+ - `eval_strategy`: steps
872
+ - `per_device_train_batch_size`: 16
873
+ - `per_device_eval_batch_size`: 16
874
+ - `num_train_epochs`: 4
875
+ - `warmup_ratio`: 0.1
876
+
877
+ #### All Hyperparameters
878
+ <details><summary>Click to expand</summary>
879
+
880
+ - `overwrite_output_dir`: False
881
+ - `do_predict`: False
882
+ - `eval_strategy`: steps
883
+ - `prediction_loss_only`: True
884
+ - `per_device_train_batch_size`: 16
885
+ - `per_device_eval_batch_size`: 16
886
+ - `per_gpu_train_batch_size`: None
887
+ - `per_gpu_eval_batch_size`: None
888
+ - `gradient_accumulation_steps`: 1
889
+ - `eval_accumulation_steps`: None
890
+ - `torch_empty_cache_steps`: None
891
+ - `learning_rate`: 5e-05
892
+ - `weight_decay`: 0.0
893
+ - `adam_beta1`: 0.9
894
+ - `adam_beta2`: 0.999
895
+ - `adam_epsilon`: 1e-08
896
+ - `max_grad_norm`: 1.0
897
+ - `num_train_epochs`: 4
898
+ - `max_steps`: -1
899
+ - `lr_scheduler_type`: linear
900
+ - `lr_scheduler_kwargs`: {}
901
+ - `warmup_ratio`: 0.1
902
+ - `warmup_steps`: 0
903
+ - `log_level`: passive
904
+ - `log_level_replica`: warning
905
+ - `log_on_each_node`: True
906
+ - `logging_nan_inf_filter`: True
907
+ - `save_safetensors`: True
908
+ - `save_on_each_node`: False
909
+ - `save_only_model`: False
910
+ - `restore_callback_states_from_checkpoint`: False
911
+ - `no_cuda`: False
912
+ - `use_cpu`: False
913
+ - `use_mps_device`: False
914
+ - `seed`: 42
915
+ - `data_seed`: None
916
+ - `jit_mode_eval`: False
917
+ - `use_ipex`: False
918
+ - `bf16`: False
919
+ - `fp16`: False
920
+ - `fp16_opt_level`: O1
921
+ - `half_precision_backend`: auto
922
+ - `bf16_full_eval`: False
923
+ - `fp16_full_eval`: False
924
+ - `tf32`: None
925
+ - `local_rank`: 0
926
+ - `ddp_backend`: None
927
+ - `tpu_num_cores`: None
928
+ - `tpu_metrics_debug`: False
929
+ - `debug`: []
930
+ - `dataloader_drop_last`: False
931
+ - `dataloader_num_workers`: 0
932
+ - `dataloader_prefetch_factor`: None
933
+ - `past_index`: -1
934
+ - `disable_tqdm`: False
935
+ - `remove_unused_columns`: True
936
+ - `label_names`: None
937
+ - `load_best_model_at_end`: False
938
+ - `ignore_data_skip`: False
939
+ - `fsdp`: []
940
+ - `fsdp_min_num_params`: 0
941
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
942
+ - `fsdp_transformer_layer_cls_to_wrap`: None
943
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
944
+ - `deepspeed`: None
945
+ - `label_smoothing_factor`: 0.0
946
+ - `optim`: adamw_torch
947
+ - `optim_args`: None
948
+ - `adafactor`: False
949
+ - `group_by_length`: False
950
+ - `length_column_name`: length
951
+ - `ddp_find_unused_parameters`: None
952
+ - `ddp_bucket_cap_mb`: None
953
+ - `ddp_broadcast_buffers`: False
954
+ - `dataloader_pin_memory`: True
955
+ - `dataloader_persistent_workers`: False
956
+ - `skip_memory_metrics`: True
957
+ - `use_legacy_prediction_loop`: False
958
+ - `push_to_hub`: False
959
+ - `resume_from_checkpoint`: None
960
+ - `hub_model_id`: None
961
+ - `hub_strategy`: every_save
962
+ - `hub_private_repo`: None
963
+ - `hub_always_push`: False
964
+ - `gradient_checkpointing`: False
965
+ - `gradient_checkpointing_kwargs`: None
966
+ - `include_inputs_for_metrics`: False
967
+ - `include_for_metrics`: []
968
+ - `eval_do_concat_batches`: True
969
+ - `fp16_backend`: auto
970
+ - `push_to_hub_model_id`: None
971
+ - `push_to_hub_organization`: None
972
+ - `mp_parameters`:
973
+ - `auto_find_batch_size`: False
974
+ - `full_determinism`: False
975
+ - `torchdynamo`: None
976
+ - `ray_scope`: last
977
+ - `ddp_timeout`: 1800
978
+ - `torch_compile`: False
979
+ - `torch_compile_backend`: None
980
+ - `torch_compile_mode`: None
981
+ - `dispatch_batches`: None
982
+ - `split_batches`: None
983
+ - `include_tokens_per_second`: False
984
+ - `include_num_input_tokens_seen`: False
985
+ - `neftune_noise_alpha`: None
986
+ - `optim_target_modules`: None
987
+ - `batch_eval_metrics`: False
988
+ - `eval_on_start`: False
989
+ - `use_liger_kernel`: False
990
+ - `eval_use_gather_object`: False
991
+ - `average_tokens_across_devices`: False
992
+ - `prompts`: None
993
+ - `batch_sampler`: batch_sampler
994
+ - `multi_dataset_batch_sampler`: proportional
995
+
996
+ </details>
997
+
998
+ ### Training Logs
999
+ | Epoch | Step | Training Loss | multi stsb de loss | multi stsb es loss | multi stsb fr loss | multi stsb it loss | multi stsb nl loss | multi stsb pl loss | multi stsb pt loss | multi stsb ru loss | multi stsb zh loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
1000
+ |:-----:|:-----:|:-------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------------:|:------------------------:|
1001
+ | 4.0 | 12960 | 3.76 | 6.4937 | 6.7132 | 6.8241 | 6.8933 | 6.6576 | 6.6250 | 6.7296 | 6.8859 | 6.4343 | 0.8551 | - |
1002
+ | -1 | -1 | - | - | - | - | - | - | - | - | - | - | - | 0.7810 |
1003
+
1004
+
1005
+ ### Framework Versions
1006
+ - Python: 3.10.13
1007
+ - Sentence Transformers: 3.4.1
1008
+ - Transformers: 4.48.2
1009
+ - PyTorch: 2.1.2+cu121
1010
+ - Accelerate: 1.3.0
1011
+ - Datasets: 2.16.1
1012
+ - Tokenizers: 0.21.0
1013
+
1014
+ ## Citation
1015
+
1016
+ ### BibTeX
1017
+
1018
+ #### Sentence Transformers
1019
+ ```bibtex
1020
+ @inproceedings{reimers-2019-sentence-bert,
1021
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1022
+ author = "Reimers, Nils and Gurevych, Iryna",
1023
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1024
+ month = "11",
1025
+ year = "2019",
1026
+ publisher = "Association for Computational Linguistics",
1027
+ url = "https://arxiv.org/abs/1908.10084",
1028
+ }
1029
+ ```
1030
+
1031
+ #### CoSENTLoss
1032
+ ```bibtex
1033
+ @online{kexuefm-8847,
1034
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1035
+ author={Su Jianlin},
1036
+ year={2022},
1037
+ month={Jan},
1038
+ url={https://kexue.fm/archives/8847},
1039
+ }
1040
+ ```
1041
+
1042
+ <!--
1043
+ ## Glossary
1044
+
1045
+ *Clearly define terms in order to be accessible across audiences.*
1046
+ -->
1047
+
1048
+ <!--
1049
+ ## Model Card Authors
1050
+
1051
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1052
+ -->
1053
+
1054
+ <!--
1055
+ ## Model Card Contact
1056
+
1057
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1058
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e76d1a351d7292fb38cc125374d337d75b5cc838cc4b94f6334ba3660c399ca8
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_MultiHeadGeneralizedPooling",
12
+ "type": "sentence_generalized_pooling.multihead_generalized_pooling.MultiHeadGeneralizedPooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }