--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 440533d0-4ce2-46c1-8a0e-f65c18162efd results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 37c8687d026e9fd5_train_data.json ds_type: json format: custom path: /workspace/input_data/37c8687d026e9fd5_train_data.json type: field_instruction: question field_output: process format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/440533d0-4ce2-46c1-8a0e-f65c18162efd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2639 micro_batch_size: 2 mlflow_experiment_name: /tmp/37c8687d026e9fd5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 sequence_len: 2048 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.03300482530545966 wandb_entity: null wandb_mode: online wandb_name: a93fe1fb-147c-44b3-88ca-b0335c410502 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a93fe1fb-147c-44b3-88ca-b0335c410502 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 440533d0-4ce2-46c1-8a0e-f65c18162efd This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2639 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6189 | 0.0001 | 1 | 0.7597 | | 1.8377 | 0.0082 | 150 | 0.3992 | | 1.1386 | 0.0164 | 300 | 0.3287 | | 0.8881 | 0.0246 | 450 | 0.2975 | | 1.0054 | 0.0328 | 600 | 0.2704 | | 1.0347 | 0.0410 | 750 | 0.2467 | | 0.7466 | 0.0491 | 900 | 0.2219 | | 0.7175 | 0.0573 | 1050 | 0.1994 | | 0.8256 | 0.0655 | 1200 | 0.1825 | | 0.731 | 0.0737 | 1350 | 0.1682 | | 0.5574 | 0.0819 | 1500 | 0.1521 | | 0.4409 | 0.0901 | 1650 | 0.1386 | | 0.4958 | 0.0983 | 1800 | 0.1268 | | 0.4718 | 0.1065 | 1950 | 0.1164 | | 0.3277 | 0.1147 | 2100 | 0.1075 | | 0.4109 | 0.1229 | 2250 | 0.1008 | | 0.3703 | 0.1311 | 2400 | 0.0974 | | 0.4028 | 0.1393 | 2550 | 0.0961 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1