--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 12b3db6d-6d65-435d-8a25-2864637b169b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5f268db15ffc7212_train_data.json ds_type: json format: custom path: /workspace/input_data/5f268db15ffc7212_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/12b3db6d-6d65-435d-8a25-2864637b169b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 5040 micro_batch_size: 2 mlflow_experiment_name: /tmp/5f268db15ffc7212_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04469673266884191 wandb_entity: null wandb_mode: online wandb_name: e613d36b-a8a6-4953-9f33-ddca7d87fc98 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e613d36b-a8a6-4953-9f33-ddca7d87fc98 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 12b3db6d-6d65-435d-8a25-2864637b169b This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 5040 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.526 | 0.0001 | 1 | 2.4610 | | 2.0932 | 0.0112 | 150 | 2.3241 | | 1.9923 | 0.0225 | 300 | 2.2711 | | 2.5518 | 0.0337 | 450 | 2.2464 | | 2.2405 | 0.0449 | 600 | 2.2287 | | 2.7935 | 0.0561 | 750 | 2.1983 | | 2.1035 | 0.0674 | 900 | 2.1862 | | 2.3212 | 0.0786 | 1050 | 2.1668 | | 1.9817 | 0.0898 | 1200 | 2.1552 | | 2.1509 | 0.1011 | 1350 | 2.1452 | | 2.0084 | 0.1123 | 1500 | 2.1316 | | 1.9503 | 0.1235 | 1650 | 2.1120 | | 1.9088 | 0.1347 | 1800 | 2.0998 | | 2.4338 | 0.1460 | 1950 | 2.0879 | | 1.5782 | 0.1572 | 2100 | 2.0774 | | 2.451 | 0.1684 | 2250 | 2.0680 | | 2.1608 | 0.1797 | 2400 | 2.0558 | | 1.9455 | 0.1909 | 2550 | 2.0448 | | 1.9849 | 0.2021 | 2700 | 2.0360 | | 2.1229 | 0.2134 | 2850 | 2.0262 | | 2.0596 | 0.2246 | 3000 | 2.0166 | | 2.0005 | 0.2358 | 3150 | 2.0094 | | 2.5008 | 0.2470 | 3300 | 2.0030 | | 1.951 | 0.2583 | 3450 | 1.9947 | | 2.2078 | 0.2695 | 3600 | 1.9886 | | 2.0641 | 0.2807 | 3750 | 1.9838 | | 2.1594 | 0.2920 | 3900 | 1.9794 | | 2.405 | 0.3032 | 4050 | 1.9754 | | 1.5995 | 0.3144 | 4200 | 1.9723 | | 1.9719 | 0.3256 | 4350 | 1.9696 | | 1.6564 | 0.3369 | 4500 | 1.9680 | | 1.5252 | 0.3481 | 4650 | 1.9671 | | 1.5916 | 0.3593 | 4800 | 1.9666 | | 1.7533 | 0.3706 | 4950 | 1.9663 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1