--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-en-75-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-en-75-ner type: Rodrigo1771/drugtemist-en-75-ner config: DrugTEMIST English NER split: validation args: DrugTEMIST English NER metrics: - name: Precision type: precision value: 0.9342105263157895 - name: Recall type: recall value: 0.9263746505125815 - name: F1 type: f1 value: 0.930276087973795 - name: Accuracy type: accuracy value: 0.9987162671280663 --- # output This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-75-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0065 - Precision: 0.9342 - Recall: 0.9264 - F1: 0.9303 - Accuracy: 0.9987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0189 | 1.0 | 504 | 0.0052 | 0.8712 | 0.9394 | 0.9040 | 0.9984 | | 0.0047 | 2.0 | 1008 | 0.0048 | 0.9253 | 0.9236 | 0.9244 | 0.9987 | | 0.0027 | 3.0 | 1512 | 0.0059 | 0.9252 | 0.9226 | 0.9239 | 0.9986 | | 0.0015 | 4.0 | 2016 | 0.0065 | 0.9342 | 0.9264 | 0.9303 | 0.9987 | | 0.0011 | 5.0 | 2520 | 0.0073 | 0.9073 | 0.9394 | 0.9231 | 0.9986 | | 0.0005 | 6.0 | 3024 | 0.0090 | 0.9191 | 0.9217 | 0.9204 | 0.9984 | | 0.0007 | 7.0 | 3528 | 0.0084 | 0.9074 | 0.9310 | 0.9190 | 0.9986 | | 0.0004 | 8.0 | 4032 | 0.0085 | 0.9093 | 0.9338 | 0.9214 | 0.9986 | | 0.0003 | 9.0 | 4536 | 0.0080 | 0.9186 | 0.9357 | 0.9271 | 0.9987 | | 0.0002 | 10.0 | 5040 | 0.0083 | 0.9210 | 0.9348 | 0.9278 | 0.9987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1