# DeepSeek-R1-Distill-Llama-8B Fine-tuned on Finance Dataset This model is a fine-tuned version of DeepSeek-R1-Distill-Llama-8B using LoRA adapters, trained on financial instruction data. ## Model Details - **Base Model**: unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit - **Fine-tuning Method**: LoRA - **LoRA Parameters**: r=4, alpha=16 - **Target Modules**: q_proj, k_proj, v_proj, o_proj - **Training Dataset**: Rishi-19/finance-instruct-dataset ## Use Cases This model is optimized for financial analysis, valuation calculations, and financial advisory tasks. ## Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig import torch # Set device device = "cuda" if torch.cuda.is_available() else "cpu" # Load the model and tokenizer model_name = "Rishi-19/deepseek_finetuned_model_rishi" tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the base model first peft_config = PeftConfig.from_pretrained(model_name) base_model = AutoModelForCausalLM.from_pretrained( peft_config.base_model_name_or_path, torch_dtype=torch.float16, # Use half precision to save memory device_map="auto", trust_remote_code=True ) # Then load the PEFT adapter model = PeftModel.from_pretrained(base_model, model_name) model.eval() # Set to evaluation mode # Generate text inputs = tokenizer("Calculate the Net Present Value of a project with initial investment of $1M", return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(**inputs, max_length=200) print(tokenizer.decode(outputs[0])) ```