changed python example
Browse files
README.md
CHANGED
@@ -15,15 +15,32 @@ This model is optimized for financial analysis, valuation calculations, and fina
|
|
15 |
## Example Usage
|
16 |
```python
|
17 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
-
from peft import PeftModel
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Load the model and tokenizer
|
21 |
model_name = "Rishi-19/deepseek_finetuned_model_rishi"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Generate text
|
26 |
-
inputs = tokenizer("Calculate the Net Present Value of a project with initial investment of $1M", return_tensors="pt")
|
27 |
-
|
|
|
28 |
print(tokenizer.decode(outputs[0]))
|
29 |
```
|
|
|
15 |
## Example Usage
|
16 |
```python
|
17 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
+
from peft import PeftModel, PeftConfig
|
19 |
+
import torch
|
20 |
+
|
21 |
+
# Set device
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
# Load the model and tokenizer
|
25 |
model_name = "Rishi-19/deepseek_finetuned_model_rishi"
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
|
28 |
+
# Load the base model first
|
29 |
+
peft_config = PeftConfig.from_pretrained(model_name)
|
30 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
peft_config.base_model_name_or_path,
|
32 |
+
torch_dtype=torch.float16, # Use half precision to save memory
|
33 |
+
device_map="auto",
|
34 |
+
trust_remote_code=True
|
35 |
+
)
|
36 |
+
|
37 |
+
# Then load the PEFT adapter
|
38 |
+
model = PeftModel.from_pretrained(base_model, model_name)
|
39 |
+
model.eval() # Set to evaluation mode
|
40 |
|
41 |
# Generate text
|
42 |
+
inputs = tokenizer("Calculate the Net Present Value of a project with initial investment of $1M", return_tensors="pt").to(device)
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = model.generate(**inputs, max_length=200)
|
45 |
print(tokenizer.decode(outputs[0]))
|
46 |
```
|